Advertisement Remove all ads

Use Polar Co Ordinates to Evaluate ∫ ∫ ( X 2 + Y 2 ) 2 X 2 Y 2 𝒅𝒙 π’…π’š Over Yhe Area Common to Circle X 2 + Y 2 = a X and X 2 + Y 2 = B Y , a > B > 0 - Applied Mathematics 2

Sum

Use polar co ordinates to evaluate `int int (x^2+y^2)^2/(x^2y^2)` 𝒅𝒙 π’…π’š over yhe area Common to circle `x^2+y^2=ax  "and" x^2+y^2=by, a>b>0`

Advertisement Remove all ads

Solution

Let I = `int int (x^2+y^2)^2/(x^2y^2)` 𝒅𝒙 π’…π’š 
Region of integration is : Area common to the circle
`x^2+y^2=ax  "and" x^2+y^2=by

To change the Cartesian coordinates to polar coordinates
Put x= r cos𝜽 and y = r sin 𝜽
Circles : r=acos 𝜽 𝒂𝒏𝒅 r=asin 𝜽
The function becomes : f(x,y) `= (x^2+y^2)^2/(x^2y^2)=r^4/(r^4sin^2thetacos^2theta)=4/(sin^2 2theta)=f(r,theta)`

Intersection of both circles is at angle = `tan^(-1)  a/b`

Divide the region into two equal halves.

For one region ,
𝟎≤𝒓≤π’ƒπ’”π’Šπ’πœ½
𝟎≤𝜽≤𝜢
For another region ,
𝟎≤𝒓≤𝒂𝒄𝒐𝒔 𝜽
𝜢≤𝜽≤`pi/2`

`therefore "I"=int_0^\alphaint_0^(bsintheta)(4rdrd theta)/(sin^2 2theta) + int_0^(acostheta) int_alpha^(pi/2)(4rdrd theta)/(sin^2 2theta)`

`therefore "I"=int_0^alpha 4/(sin^2 2theta)[r^2/2]_0^(bsin theta)d theta+int_0^(pi/2)4/(sin^2 2theta)[r^2/2]_0^(acostheta)d theta`

`=1/2b^2int_0^alphasec^2theta d theta+a^2/2int_alpha^(pi/2)cosec^2theta d theta`

`=1/2b^2tanalpha+a^2/2cotalpha`

`=(ab)/2+(ab)/2`

∴ I = ab

Concept: Application of Double Integrals to Compute Area
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×