#### Question

Let *L* be the set of all lines in XY plane and R be the relation in *L* defined as R = {(*L*_{1}, *L*_{2}): *L*_{1} is parallel to *L*_{2}}. Show that R is an equivalence relation. Find the set of all lines related to the line *y* = 2*x* + 4.

#### Solution

R = {(*L*_{1}, *L*_{2}): L_{1} is parallel to *L*_{2}}

R is reflexive as any line *L*_{1} is parallel to itself i.e., (*L*_{1}, *L*_{1}) ∈ R.

Now,

Let (*L*_{1}, *L*_{2}) ∈ R.

⇒ *L*_{1} is parallel to *L*_{2.}

⇒ *L*_{2} is parallel to *L*_{1.}

⇒ (*L*_{2}, *L*_{1}) ∈ R

∴ R is symmetric.

Now,

Let (*L*_{1}, *L*_{2}), (*L*_{2}, *L*_{3}) ∈R.

⇒ *L*_{1} is parallel to *L*_{2}. Also, *L*_{2} is parallel to *L*_{3.}

⇒ *L*_{1} is parallel to *L*_{3.}

∴R is transitive.

Hence, R is an equivalence relation.

The set of all lines related to the line *y* = 2*x* + 4 is the set of all lines that are parallel to the line *y* = 2*x*+ 4.

Slope of line *y* = 2*x* + 4 is *m* = 2

It is known that parallel lines have the same slopes.

The line parallel to the given line is of the form *y* = 2*x* + *c*, where *c* ∈**R**.

Hence, the set of all lines related to the given line is given by *y* = 2*x* + *c*, where *c* ∈ **R**.