Advertisement Remove all ads

Two sides of a parallelogram are ijk3i^+4j^-5k^ and jk-2j^+7k^. Find unit vectors parallel to the diagonals. - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Two sides of a parallelogram are `3hat"i" + 4hat"j" - 5hat"k"` and  `-2hat"j" + 7hat"k"`. Find unit vectors parallel to the diagonals.

Advertisement Remove all ads

Solution

Let ABCD be a parallelogram with

`bar"AB" = 3hat"i" + 4hat"j" - 5hat"k" and bar"BC" = - 2hat"i" + 7hat"k"`

Then `bar"AC" = bar"AB" + bar"BC"`

`= (3hat"i" + 4hat"j" - 5hat"k") + (- 2hat"i" + 7hat"k")`

`= 3hat"i" + 2hat"j" + 2hat"k"`

∴ `|bar"AC"| = sqrt(3^2 + 2^2 + 2^2) =sqrt(9 + 4 + 4) = sqrt17`

∴ unit vector along `bar"AC" = bar"AC"/|bar"AC"|`

= `1/sqrt17 (3hat"i" + 2hat"j" + 2hat"k")`

Also, `bar"BD" = bar"BA" + bar"AD" = - bar"AB" + bar"BC" = bar"BC" - bar"AB"`

`= (- 2hat"i" + 7hat"k") - (3hat"i" + 4hat"j" - 5hat"k")`

`= - 3hat"i" - 6hat"j" + 12hat"k"`

`= 3(- hat"i" - 2hat"j" + 4hat"k")`

∴ `|bar"BD"| = 3sqrt((-1)^2 + (-2)^2 + 4^2) = 3sqrt(1 + 4 + 16) = 3sqrt21`

∴ unit vector along `bar"BD" = bar"BD"/|bar"BD"|`

`= (3(- hat"i" - 2hat"j" + 4hat"k"))/(3sqrt21)`

`= 1/sqrt21 (- hat"i" - 2hat"j" + 4hat"k")`

Hence, the unit vectors parallel to the diagonals are

`1/sqrt17 (3hat"i" + 2hat"j" + 2hat"k") and 1/sqrt21 (- hat"i" - 2hat"j" + 4hat"k")`

Concept: Vectors and Their Types
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×