Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. - Mathematics

Advertisements
Advertisements

Two schools A and B want to award their selected students on the values of sincerity, truthfulness and helpfulness. School A wants to award Rs x each, Rs y each and Rs z each for the three respective values to 3, 2 and 1 students, respectively with a total award money of Rs 1,600. School B wants to spend Rs 2,300 to award 4, 1 and 3 students on the respective values (by giving the same award money to the three values as before). If the total amount of award for one prize on each value is Rs 900, using matrices, find the award money for each value. Apart from these three values, suggest one more value which should be considered for an award.

Advertisements

Solution

The information given in the question can be written as:

3x + 2y + z = 1600                ... (1)
4x + y + 3z = 2300                ... (2)
x + y + z = 900                      ... (3)

Here,

`A=[[3,2,1],[4,1,3],[1,1,1]] and B=[[1600],[2300],[900]]`

Now,

`|A|=3(-1)^(1+1)|[1,3],[1,1]|+2(-1)^(1+2)|[4,3],[1,1]|+1(-1)^(1+3)|[4,1],[1,1]|`

`|A|=3|[1,3],[1,1]|-2|[4,3],[1,1]|+1|[4,1],[1,1]|`

`⇒|A|=3(1−3)−2(4−3)+1(4−1)=−6−2+3=−5≠0`

So, A is invertible.
Let Cij be the cofactor of aij in A=[aij].
Then,

`C_11=(−1)^(1+1)|[1,3],[1,1]|=-2`

`C_12=(−1)^(1+2)|[4,3],[1,1]|=-1`

`C_13=(−1)^(1+3)|[4,1],[1,1]|=3`

`C_21=(−1)^(2+1)|[2,1],[1,1]|=-1`

`C_22=(−1)^(2+2)|[3,1],[1,1]|=2`

`C_23=(−1)^(2+3)|[3,2],[1,1]|=-1`

`C_31=(−1)^(3+1)|[2,1],[1,3]|=5`

`C_32=(−1)^(3+2)|[3,1],[4,3]|=-5`

`C_33=(−1)^(3+3)|[3,2],[4,1]|=-5`

cofactor of A=`[[C_11,C_12,C_13],[C_21,C_22,C_23],[C_31,C_32,C_33]]`

cofactor of A=`[[-2,-1,3],[-1,2,-1],[5,-5,-5]]`

`therefore adjA=[[-2,-1,3],[-1,2,-1],[5,-5,-5]]^T=[[-2,-1,5],[-1,2,-5],[3,-1,-5]]`

`i.e A^(-1)=`

`A^(-1)=-1/5[[-2,-1,5],[-1,2,-5],[3,-1,-5]]`

Thus, the solution of the system of equations is given by

`X=A^(-1)B=-1/5[[-2,-1,5],[-1,2,-5],[3,-1,-5]]`

`=>[[x],[y],[z]]=-1/5[[-3200-2300+4500],[-1600+4600-4500],[4800-2300-4500]]`

`=>[[x],[y],[z]]=-1/5[[-1000],[-1500],[-2000]]`

`=>[[x],[y],[z]]=[[200],[300],[400]]`

Hence, the money awarded for sincerity, truthfulness and helpfulness are Rs 200, Rs 300 and Rs 400, respectively.

Here, the determinant of the matrix A is non-zero. Therefore, x, y and z will have unique solutions: x = 200, y = 300 and z = 400.

  Is there an error in this question or solution?
2013-2014 (March) All India Set 1

RELATED QUESTIONS

The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the inverse of the matrices (if it exists).

`[(1,2,3),(0,2,4),(0,0,5)]`


Find the inverse of the matrices (if it exists).

`[(1,0,0),(3,3,0),(5,2,-1)]`


If `A^(-1) =[(3,-1,1),(-15,6,-5),(5,-2,2)]` and `B = [(1,2,-2),(-1,3,0),(0,-2,1)]`  find  `(AB)^(-1)`


Find the adjoint of the following matrix:
\[\begin{bmatrix}a & b \\ c & d\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

Find the adjoint of the following matrix:
\[\begin{bmatrix}\cos \alpha & \sin \alpha \\ \sin \alpha & \cos \alpha\end{bmatrix}\]

Verify that (adj A) A = |A| I = A (adj A) for the above matrix.

If  \[A = \begin{bmatrix}- 4 & - 3 & - 3 \\ 1 & 0 & 1 \\ 4 & 4 & 3\end{bmatrix}\], show that adj A = A.


Find A (adj A) for the matrix  \[A = \begin{bmatrix}1 & - 2 & 3 \\ 0 & 2 & - 1 \\ - 4 & 5 & 2\end{bmatrix} .\]


Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 2 & 5 \\ 1 & - 1 & - 1 \\ 2 & 3 & - 1\end{bmatrix}\]

Find the inverse of the following matrix.

\[\begin{bmatrix}1 & 0 & 0 \\ 0 & \cos \alpha & \sin \alpha \\ 0 & \sin \alpha & - \cos \alpha\end{bmatrix}\]

For the following pair of matrix verify that \[\left( AB \right)^{- 1} = B^{- 1} A^{- 1} :\]

\[A = \begin{bmatrix}3 & 2 \\ 7 & 5\end{bmatrix}\text{ and }B \begin{bmatrix}4 & 6 \\ 3 & 2\end{bmatrix}\]


If \[A = \begin{bmatrix}2 & 3 \\ 1 & 2\end{bmatrix}\] , verify that \[A^2 - 4 A + I = O,\text{ where }I = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix}\text{ and }O = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix}\] . Hence, find A−1.


If \[A = \begin{bmatrix}3 & 1 \\ - 1 & 2\end{bmatrix}\], show that 

\[A^2 - 5A + 7I = O\].  Hence, find A−1.

For the matrix \[A = \begin{bmatrix}1 & 1 & 1 \\ 1 & 2 & - 3 \\ 2 & - 1 & 3\end{bmatrix}\] . Show that

\[A^{- 3} - 6 A^2 + 5A + 11 I_3 = O\]. Hence, find A−1.

If \[A = \begin{bmatrix}2 & - 1 & 1 \\ - 1 & 2 & - 1 \\ 1 & - 1 & 2\end{bmatrix}\].
Verify that \[A^3 - 6 A^2 + 9A - 4I = O\]  and hence find A−1.

If \[A = \begin{bmatrix}- 1 & 2 & 0 \\ - 1 & 1 & 1 \\ 0 & 1 & 0\end{bmatrix}\] , show that  \[A^2 = A^{- 1} .\]


Find the matrix X satisfying the equation 

\[\begin{bmatrix}2 & 1 \\ 5 & 3\end{bmatrix} X \begin{bmatrix}5 & 3 \\ 3 & 2\end{bmatrix} = \begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} .\]

Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 6 \\ - 3 & 5\end{bmatrix}\]


Find the inverse by using elementary row transformations:

\[\begin{bmatrix}1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1\end{bmatrix}\]


If A is a square matrix, then write the matrix adj (AT) − (adj A)T.


If A is an invertible matrix such that |A−1| = 2, find the value of |A|.


If \[A = \begin{bmatrix}1 & - 3 \\ 2 & 0\end{bmatrix}\], write adj A.


If \[A = \begin{bmatrix}3 & 1 \\ 2 & - 3\end{bmatrix}\], then find |adj A|.


If A is an invertible matrix of order 3, then which of the following is not true ?


If \[A = \begin{bmatrix}3 & 4 \\ 2 & 4\end{bmatrix}, B = \begin{bmatrix}- 2 & - 2 \\ 0 & - 1\end{bmatrix},\text{ then }\left( A + B \right)^{- 1} =\]


If \[S = \begin{bmatrix}a & b \\ c & d\end{bmatrix}\], then adj A is ____________ .


If A is a singular matrix, then adj A is _____________ .
(a) 
(b)
(c)
(d) not defined


If B is a non-singular matrix and A is a square matrix, then det (B−1 AB) is equal to ___________ .


If A satisfies the equation \[x^3 - 5 x^2 + 4x + \lambda = 0\] then A-1 exists if _____________ .


For non-singular square matrix A, B and C of the same order \[\left( A B^{- 1} C \right) =\] ______________ .


If x, y, z are non-zero real numbers, then the inverse of the matrix \[A = \begin{bmatrix}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{bmatrix}\], is _____________ .

Using matrix method, solve the following system of equations: 
x – 2y = 10, 2x + y + 3z = 8 and -2y + z = 7


For what value of x, matrix `[(6-"x", 4),(3-"x", 1)]` is a singular matrix?


For A = `[(3,1),(-1,2)]`, then 14A−1 is given by:


If A = `[(1/sqrt(5), 2/sqrt(5)),((-2)/sqrt(5), 1/sqrt(5))]`, B = `[(1, 0),(i, 1)]`, i = `sqrt(-1)` and Q = ATBA, then the inverse of the matrix A. Q2021 AT is equal to ______.


If A = `[(0, 1),(0, 0)]`, then A2023 is equal to ______.


Given that A is a square matrix of order 3 and |A| = –2, then |adj(2A)| is equal to ______.


Share
Notifications



      Forgot password?
Use app×