Maharashtra State BoardHSC Commerce 12th Board Exam
Advertisement Remove all ads

Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find x¯,y¯ and r. - Mathematics and Statistics

Sum

Two lines of regression are 10x + 3y − 62 = 0 and 6x + 5y − 50 = 0. Identify the regression of x on y. Hence find `bar x, bar y` and r.

Advertisement Remove all ads

Solution

Given, two lines of regression are

10x + 3y – 62 = 0

i.e., 10x + 3y = 62   …(i)

and 6x + 5y – 50 = 0

i.e., 6x + 5y = 50 …(ii)

By (i) × 5 - (ii) × 3, we get

50x + 15y = 310
18x + 15y = 150
-      -           -    
32x    = 160
∴ x = 5

Substituting x = 5 in (i) we get,

10(5) + 3y = 62

∴ 50 + 3y = 62

∴ 3y = 62 - 50 = 12

∴ y = 4

Since the point of intersection of two regression lines is `(bar x, bar y)`,

`bar x = 5  and bar y = 4`

Now, 

Let 10x + 3y - 62 = 0 be the regression equation of X on Y.

∴ The equation becomes 10x = –3y + 62

i.e., 10X = –3Y + 62

i.e., X = `- 3/10 "Y" + 62/10`

Comparing it with X = bXY Y + a, we get

∴ `"b"_"XY" = - 3/10`

Now, other equation 6x + 5y – 50 = 0 be the regression equation of Y on X.

∴ The equation becomes 5y = – 6x + 50

i.e., 5Y = – 6X + 50

i.e., Y = `- 6/5 "x" + 50/5`

Comparing it with Y = bYX X + a', we get

`"b"_"YX" = - 6/5`

Now, `"b"_"YX" * "b"_"XY" = (- 3/10)(- 6/5) = 9/25`

i.e., bXY . bYX < 1

∴ Assumption of regression equations is true.

∴ r = `+-sqrt("b"_"XY" * "b"_"YX") = +-sqrt(9/25) = +- 3/5` 

Since bYX and bXY both are negative,

r is negative.

∴ r = `- 3/5 = - 0.6`

Concept: Properties of Regression Coefficients
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×