Two lines AB and CD intersect at O. If `∠`AOC + `∠`COB + `∠`BOD = 270°, find the
measures of `∠`AOC, `∠`COB, `∠`BOD and `∠`DOA.
Advertisement Remove all ads
Solution
Given: `∠`AOC + `∠`COB + `∠`BOP = 270°
To find: `∠`AOC, `∠`COB, `∠`BOD and `∠`DOA
Here, `∠`AOC + `∠`COB + `∠`BOD + `∠`AOD = 360° [Complete angle]
⇒ 270 + `∠`AOD = 360°
⇒ `∠` AOD = 360° - 270°
⇒ `∠`AOD = 90°
Now,
`∠`AOD + `∠`BOD = 180° [Linear pair]
90 + `∠`BOD = 180°
⇒ `∠`BOD = 180° - 90°
∴ `∠`BOD = 90°
`∠`AOD = `∠`BOC = 90° [Vertically opposite angles]
`∠`BOD = `∠`AOC = 90° [Vertically opposite angles]
Concept: Concept of Parallel Lines
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads