Two coins are tossed simultaneously 500 times with the following frequencies of different outcomes:
Two heads: 95 times
One tail: 290 times
No head: 115 times
Find the probability of occurrence of each of these events.
Solution
The total number of trials is 500.
Let A be the event of getting two heads, B be the event of getting one tail and C be the event of getting no head.
The number of times A happens is 95, the number of times B happens is 290 and the number of times C happens is 115.
Remember the empirical or experimental or observed frequency approach to probability.
If n be the total number of trials of an experiment and A is an event associated to it such that A happens in m-trials. Then the empirical probability of happening of event A is denoted by P (A) and is given by
P(A) = `m/n`
Therefore, we have
P(A) = `95/500`
=0.19
P(B) = `290/500`
= 0.58
P(c) = `115/500`
=0.23