###### Advertisements

###### Advertisements

Twice the radius is ________________

###### Advertisements

#### Solution

Twice the radius is **diameter**

#### APPEARS IN

#### RELATED QUESTIONS

In the given figure, PQ is a chord of length 8cm of a circle of radius 5cm. The tangents at P and Q intersect at a point T. Find the length TP

Prove that the line segment joining the point of contact of two parallel tangents to a circle is a diameter of the circle.

A point P is 13 cm from the centre of the circle. The length of the tangent drawn from P to the circle is 12cm. Find the radius of the circle.

Write True or False. Give reasons for your answers.

A chord of a circle, which is twice as long as its radius, is a diameter of the circle.

Write True or False. Give reason for your answer.

Sector is the region between the chord and its corresponding arc.

Find the length of a tangent drawn to a circle with radius 5cm, from a point 13 cm from the center of the circle.

If AB, AC, PQ are tangents in Fig. and AB = 5cm find the perimeter of ΔAPQ.

In fig. a circle touches all the four sides of quadrilateral ABCD with AB = 6cm, BC = 7cm, CD = 4cm. Find AD.

In fig.. O is the center of the circle and BCD is tangent to it at C. Prove that ∠BAC +

∠ACD = 90°

Fill in the blank:

An arc is a ................ when its ends are the ends of a diameter.

Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?

Two parallel chords are drawn in a circle of diameter 30.0 cm. The length of one chord is 24.0 cm and the distance between the two chords is 21.0 cm; find the length of another chord.

In the given figure ABC is an isosceles triangle and O is the centre of its circumcircle. Prove that AP bisects angle BPC .

In the given figure, AB is a side of a regular six-sided polygon and AC is a side of a regular eight sided polygon inscribed in the circle with centre O. Calculate the sizes of:

(i) ∠AOB, (ii) ∠ACB (iii) ∠ABC

A point P is 25 cm away from the center of a circle and the length of tangent drawn from P to the circle is 24 cm. Find the radius of the circle.

In the given figure, a circle inscribed in a triangle ABC, touches the sides AB, BC and AC at points D, E and F Respectively. If AB= 12cm, BC=8cm and AC = 10cm, find the length of AD, BE and CF.

In the given figure, PA and PB are two tangents to the circle with centre O. If ∠APB = 50° then what is the measure of ∠OAB.

In Fig. 4, a circle inscribed in triangle ABC touches its sides AB, BC and AC at points D, E and F respectively. If AB = 12 cm, BC = 8 cm and AC = 10 cm, then find the lengths of AD, BE and CF.

In Figure 3, a circle touches all the four sides of a quadrilateral ABCD whose sides are AB = 6 cm, BC = 9 cm and CD = 8 cm. Find the length of the side AD.

In the given figure, *O *is the centre of the circle. Find ∠*CBD**.*

In the given figure, *O* is the centre of the circle and ∠*DAB* = 50° . Calculate the values of *x*and *y*.

In the given figure, *O* is the centre of the circle. If ∠*CEA* = 30°, Find the values of *x*, *y* and *z*.

The radius of a circle is 6 cm. The perpendicular distance from the centre of the circle to the chord which is 8 cm in length, is

In the given figure, *BDC* is a tangent to the given circle at point *D* such that *BD* = 30 cm and *CD *= 7 cm. The other tangents *BE* and *CF* are drawn respectively from *B* and *C* to the circle and meet when produced at *A* making BAC a right angle triangle. Calculate (i) *AF*

*AB* and *CD* are common tangents to two circles of equal radii. Prove that *AB* = *CD*.

In the given figure, a ∆ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC are of lengths 8 cm and 6 cm respectively. Find the lengths of sides AB and AC, when area of ∆ABC is 84 cm^{2}.

In the given figure, AB is a diameter of a circle with centre O and AT is a tangent. If \[\angle\] AOQ = 58º, find \[\angle\] ATQ.

Choose correct alternative answer and fill in the blank.

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.

The point of concurrence of all angle bisectors of a triangle is called the ______.

The circle which passes through all the vertices of a triangle is called ______.

Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.

The length of the longest chord of the circle with radius 2.9 cm is ______.

Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.

The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.

Find the length of the chord of a circle in the following when:

Radius is 13 cm and the distance from the centre is 12 cm

If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.

Find the area of a circle of radius 7 cm.

In the above figure, `square`XLMT is a rectangle. LM = 21 cm, XL = 10.5 cm. Diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of non-shaded region.

In the given figure, seg MN is a chord of a circle with centre O. MN = 25, L is a point on chord MN such that ML = 9 and d(O,L) = 5. Find the radius of the circle.

**The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,**

find the radius of the circle.

**In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.**

Prove that:

( i ) ΔOPA ≅ ΔOQC

( ii ) ΔBPC ≅ ΔBQA

**Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?**

**Suppose you are given a circle. Describe a method by which you can find the center of this circle.**

In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle. seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:

a. Draw ray CE. It intersects the circle at D.

b. Show that CE = ED.

c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof.

Two concentric circles with center O have A, B, C, D as the points of intersection with the lines L shown in the figure. If AD = 12 cm and BC s = 8 cm, find the lengths of AB, CD, AC and BD.

In the given circle with diameter AB, find the value of x.

In the given figure, the area enclosed between the two concentric circles is 770 cm^{2}. If the radius of the outer circle is 21 cm, calculate the radius of the inner circle.

In Fig., chords AB and CD of the circle intersect at O. AO = 5 cm, BO = 3 cm and CO = 2.5 cm. Determine the length of DO.

**Use the figure given below to fill in the blank:**

______ is a chord of the circle.

**Use the figure given below to fill in the blank:**

________ is a radius of the circle.

Draw a circle of radius of 4.2 cm. Mark its center as O. Takes a point A on the circumference of the circle. Join AO and extend it till it meets point B on the circumference of the circle,

(i) Measure the length of AB.

(ii) Assign a special name to AB.

Draw circle with diameter: 6 cm

In above case, measure the length of the radius of the circle drawn.

Draw a circle of radius 4.8 cm and mark its center as P.

(i) Draw radii PA and PB such that ∠APB = 45°.

(ii) Shade the major sector of the circle

Draw a circle of radius 3.6 cm. In the circle, draw a chord AB = 5 cm. Now shade the minor segment of the circle.

Construct a triangle ABC with AB = 4.2 cm, BC = 6 cm and AC = 5cm. Construct the circumcircle of the triangle drawn.

Construct a triangle ABC with AB = 5 cm, ∠B = 60° and BC = 6. 4 cm. Draw the incircle of the triangle ABC.

Construct a triangle XYZ in which XY = YZ= 4.5 cm and ZX = 5.4 cm. Draw the circumcircle of the triangle and measure its circumradius.

The diameter of a circle is 12.6 cm. State, the length of its radius.

If the radius of a circle is 5 cm, what will its diameter be?

**Draw circle with the radii given below.**

2 cm

**Draw circle with the radii given below.**

3 cm

**Draw a circle with the radii given below.**

4 cm

Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.

In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram |
Points in the interior of the circle |
Points in the exterior of the circle |
Points on the circle |

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre

The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle

Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA

A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord

In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?

Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord

A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is

In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is

AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is

The ratio between the circumference and diameter of any circle is _______

A line segment which joins any two points on a circle is a ___________

The longest chord of a circle is __________

The radius of a circle of diameter 24 cm is _______

A part of circumference of a circle is called as _______

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

15 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

1760 cm |

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) |
diameter (d) |
Circumference (C) |

24 m |

All the radii of a circle are _______________

The ______________ is the longest chord of a circle

A line segment joining any point on the circle to its center is called the _____________ of the circle

A line segment with its end points on the circle is called a ______________

Find the diameter of the circle

Radius = 10 cm

Find the diameter of the circle

Radius = 8 cm

Find the diameter of the circle

Radius = 6 cm

Find the radius of the circle

Diameter = 24 cm

Find the radius of the circle

Diameter = 30 cm

Find the radius of the circle

Diameter = 76 cm

Circles with centres A, B and C touch each other externally. If AB = 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.

A, B, C are any points on the circle with centre O. If m(arc BC) = 110° and m(arc AB) = 125°, find measure arc AC.

In figure, O is the centre of a circle, chord PQ ≅ chord RS. If ∠POR = 70° and (arc RS) = 80°, find

(i) m(arc PR)

(ii) m(arc QS)

(iii) m(arc QSR)

In the figure, segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B respectively, prove that ∠AOB = 90°

In the figure, a circle touches all the sides of quadrilateral ABCD from the inside. The center of the circle is O. If AD⊥ DC and BC = 38, QB = 27, DC = 25, then find the radius of the circle.

Circles with centres A, B and C touch each other externally. If AB = 36, BC = 32, CA = 30, then find the radii of each circle.

A point A is 26 cm away from the centre of a circle and the length of the tangent drawn from A to the circle is 24 cm. Find the radius of the circle.

The length of the tangent from point A to a circle, of radius 3 cm, is 4 cm. The distance of A from the centre of the circle is ______

If an isosceles triangle ABC, in which AB = AC = 6 cm, is inscribed in a circle of radius 9 cm, find the area of the triangle.

If A, B, C and D are four points such that ∠BAC = 45° and ∠BDC = 45°, then A, B, C, D are concyclic.

If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel.

Draw two acute angles and one obtuse angle without using a protractor. Estimate the measures of the angles. Measure them with the help of a protractor and see how much accurate is your estimate

From the figure, identify three radii.

From the figure, identify two points in the interior.

From the figure, identify a point in the exterior.

From the figure, identify a segment.

Is every diameter of a circle also a chord?

Is every chord of a circle also a diameter?

Draw any circle and mark

- it's centre
- a radius
- a diameter
- a sector
- a segment
- a point in its interior
- a point in its exterior
- an arc

Say true or false:

Two diameters of a circle will necessarily intersect.

Say true or false:

The centre of a circle is always in its interior.

A figure is in the form of rectangle PQRS having a semi-circle on side QR as shown in the figure. Determine the area of the plot.

A circle of radius 3 cm with centre O and a point L outside the circle is drawn, such that OL = 7 cm. From the point L, construct a pair of tangents to the circle. Justify LM and LN are the two tangents.

A 7 m broad pathway goes around a circular park with a circumference of 352 m. Find the area of road.

In the given figure, O is the centre of the circle. If ∠ AOB = 145°, then find the value of x.

AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

- Draw the figure using the given information.
- Find the measures of ∠CAT and ∠ABC with reasons.
- Whether ∠CAT and ∠ABC are congruent? Justify your answer.

The circumcentre of a triangle is the point which is ______.