CBSE Class 10CBSE
Share
Notifications

View all notifications

If `Cos Theta = 3/5`, Find the Value of `(Sin Theta - 1/(Tan Theta))/(2 Tan Theta)` - CBSE Class 10 - Mathematics

Login
Create free account


      Forgot password?

Question

if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`

Solution

We know that `cos theta = "𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒"/"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒"`

Let us consider right angled Δle ABC

Let x be the opposite side, By applying Pythagoras theorem

𝐴𝐶2 = 𝐴𝐵2 + 𝐵𝐶2

25 = 𝑥2 + 9

𝑥2 = 16 ⇒ 𝑥 = 4

`sin theta = (AB)/(AC) = 4/5`

`tan theta = (AB)/(BC) = 4/3`

Substitute sin 𝜃, tan 𝜃 in equation we get

`(sin theta 1/(tan theta))/(2 tan theta) = (4/5 3/4)/(2 xx 4/3)`

`= ((16 - 15)/20)/(8/3) = (1/20)/(8/3)`

`=  1/20 xx  3/4 = 3/160`

  Is there an error in this question or solution?

APPEARS IN

Solution If `Cos Theta = 3/5`, Find the Value of `(Sin Theta - 1/(Tan Theta))/(2 Tan Theta)` Concept: Trigonometric Ratios.
S
View in app×