Question
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
Solution
We know that `cos theta = "𝑎𝑑𝑗𝑎𝑐𝑒𝑛𝑡 𝑠𝑖𝑑𝑒"/"ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒"`
Let us consider right angled Δle ABC
Let x be the opposite side, By applying Pythagoras theorem
𝐴𝐶2 = 𝐴𝐵2 + 𝐵𝐶2
25 = 𝑥2 + 9
𝑥2 = 16 ⇒ 𝑥 = 4
`sin theta = (AB)/(AC) = 4/5`
`tan theta = (AB)/(BC) = 4/3`
Substitute sin 𝜃, tan 𝜃 in equation we get
`(sin theta 1/(tan theta))/(2 tan theta) = (4/5 3/4)/(2 xx 4/3)`
`= ((16 - 15)/20)/(8/3) = (1/20)/(8/3)`
`= 1/20 xx 3/4 = 3/160`
Is there an error in this question or solution?
APPEARS IN
Solution If `Cos Theta = 3/5`, Find the Value of `(Sin Theta - 1/(Tan Theta))/(2 Tan Theta)` Concept: Trigonometric Ratios.