Share

Books Shortlist

# Without using trigonometric tables, evaluate the following: (sin^2 20°+sin^2 70°)/(cos^2 20°+cos^2 70°)+(sin(90°−θ)sinθ)/(tanθ+cos(90°−θ)cosθ)/(cotθ) - CBSE Class 10 - Mathematics

ConceptTrigonometric Ratios of Complementary Angles

#### Question

Without using trigonometric tables, evaluate the following:

(\sin ^{2}20^\text{o}+\sin^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }

#### Solution

(sin^{2}20^\text{o}+\sin ^{2}70^\text{o})/(\cos ^{2}20^\text{o}+\cos ^{2}70^\text{o}}+\frac{\sin (90^\text{o}-\theta )\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos \theta }{\cot \theta }

=(\sin^{2}20^\text{o}+\sin^{2}(90^\text{o}-20^\text{o}))/(\cos ^{2}20^\text{o}+\cos^{2}(90^\text{o}-20^\text{o})}+\frac{\sin (90^\text{o}-\theta)\sin \theta }{\tan \theta }+\frac{\cos (90^\text{o}-\theta )\cos\theta }{\cot \theta }

=(sin ^{2}20^\text{o}+\cos ^{2}20^\text{o})/(\cos^{2}20^\text{o}+\sin^{2}20^\text{o}}+\frac{\cos \theta \sin\theta }{\frac{\sin \theta }{\cos \theta }}+\frac{\sin \theta \cos\theta }{\frac{\cos \theta }{\sin \theta }}

[ \sin (90^\text{o}-\theta )=\cos \theta " and "\cos (90^\text{o}-\theta )=\sin \theta]

= 1 + cos^2 θ + sin^2 θ = 1 + 1 = 2

Is there an error in this question or solution?
Solution Without using trigonometric tables, evaluate the following: (sin^2 20°+sin^2 70°)/(cos^2 20°+cos^2 70°)+(sin(90°−θ)sinθ)/(tanθ+cos(90°−θ)cosθ)/(cotθ) Concept: Trigonometric Ratios of Complementary Angles.
S