#### My Profile

1. Inform you about time table of exam.

2. Inform you about new question papers.

3. New video tutorials information.

#### Question

If sinθ + sin^{2} θ = 1, prove that cos^{2} θ + cos^{4} θ = 1

#### Solution

#### Similar questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA`

If (secA + tanA)(secB + tanB)(secC + tanC) = (secA – tanA)(secB – tanB)(secC – tanC) prove that each of the side is equal to ±1. We have,

If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`

Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`

Choose the correct option. Justify your choice.

9 sec^{2} A − 9 tan^{2} A =

(A) 1

(B) 9

(C) 8

(D) 0