#### My Profile

1. Inform you about time table of exam.

2. Inform you about new question papers.

3. New video tutorials information.

#### Question

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(1+ secA)/sec A = (sin^2A)/(1-cosA)`

[Hint : Simplify LHS and RHS separately]

#### Solution

#### Similar questions VIEW ALL

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`

Prove the following identities, where the angles involved are acute angles for which the expressions are defined

`(tantheta)/(1-cottheta) + (cottheta)/(1-tantheta) = 1+secthetacosectheta`

Prove that `\frac{\sin \theta -\cos \theta }{\sin \theta +\cos \theta }+\frac{\sin\theta +\cos \theta }{\sin \theta -\cos \theta }=\frac{2}{2\sin^{2}\theta -1}`