CBSE (Science) Class 11CBSE
Share
Notifications

View all notifications

Reduce Each of the Following Expressions to the Sine and Cosine of a Single Expression: Cos X − Sin X - CBSE (Science) Class 11 - Mathematics

Login
Create free account


      Forgot password?

Question

Reduce each of the following expressions to the sine and cosine of a single expression: 

cos x − sin 

Solution

\[\text{ Let } f\left( x \right) = \cos x - \sin x\]
\[\text{ Dividing and multiplying by } \sqrt{1^2 + 1^2}, i . e . \text{ by }\sqrt{2,} \text{ we get } : \]
\[ f\left( x \right) = \sqrt{2}\left( \frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x \right)\]
\[ \Rightarrow f\left( x \right) = \sqrt{2}(\cos45°\cos x - \sin45°\sin x) \]  
\[ \Rightarrow f\left( x \right) = \sqrt{2}\cos\left( \frac{\pi}{4} + x \right)\]
\[\text{ Again }, \]
\[ f\left( x \right) = \sqrt{2}\left( \frac{1}{\sqrt{2}}\cos x - \frac{1}{\sqrt{2}}\sin x \right)\]
\[ \Rightarrow f\left( x \right) = \sqrt{2}(\sin45°\cos x - \cos45∏\sin x)\]
\[ \Rightarrow f(x) = \sqrt{2} \sin\left( \frac{\pi}{4} - x \right)\]

  Is there an error in this question or solution?

APPEARS IN

 RD Sharma Solution for Mathematics Class 11 (2019 to Current)
Chapter 7: Values of Trigonometric function at sum or difference of angles
Ex.7.20 | Q: 2.2 | Page no. 26

Video TutorialsVIEW ALL [1]

Solution Reduce Each of the Following Expressions to the Sine and Cosine of a Single Expression: Cos X − Sin X Concept: Trigonometric Functions of Sum and Difference of Two Angles.
S
View in app×