CBSE (Science) Class 11CBSE
Share

Books Shortlist

# DIV » DIVProve That: Sin ( π 3 − X ) Cos ( π 6 + X ) + Cos ( π 3 − X ) Sin ( π 6 + X ) = 1 - CBSE (Science) Class 11 - Mathematics

ConceptTrigonometric Functions of Sum and Difference of Two Angles

#### Question

Prove that:

$\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1$

#### Solution

$\frac{\pi}{3} = 60^\circ, \frac{\pi}{6} = 30^\circ$
$\text{ LHS }= \sin\left( 60^\circ - x \right) \cos\left( 30^\circ + x \right) + \cos\left( 60^\circ - x \right) \sin\left( 30^\circ + x \right)$
$= \sin\left[ \left( 60^\circ - x \right) + \left( 30^\circ + x \right) \right] (\text{ Using the formula }\sin A \cos B + \cos A \sin B = \sin\left( A + B \right)$
$\text{ and taking }A = 60^\circ - x\text{ and }B = 30^\circ + x$
$= \sin90^\circ$
$= 1$
= RHS
Hence proved.

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Solution for Mathematics Class 11 (2019 to Current)
Chapter 7: Values of Trigonometric function at sum or difference of angles
Ex.7.10 | Q: 12.1 | Page no. 19
Solution DIV » DIVProve That: Sin ( π 3 − X ) Cos ( π 6 + X ) + Cos ( π 3 − X ) Sin ( π 6 + X ) = 1 Concept: Trigonometric Functions of Sum and Difference of Two Angles.
S