CBSE (Science) Class 11CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

DIV » DIVProve That: Sin ( π 3 − X ) Cos ( π 6 + X ) + Cos ( π 3 − X ) Sin ( π 6 + X ) = 1 - CBSE (Science) Class 11 - Mathematics

Login
Create free account


      Forgot password?

Question

Prove that:

\[\sin\left( \frac{\pi}{3} - x \right)\cos\left( \frac{\pi}{6} + x \right) + \cos\left( \frac{\pi}{3} - x \right)\sin\left( \frac{\pi}{6} + x \right) = 1\]

 

Solution

\[\frac{\pi}{3} = 60^\circ, \frac{\pi}{6} = 30^\circ\]
\[\text{ LHS }= \sin\left( 60^\circ - x \right) \cos\left( 30^\circ + x \right) + \cos\left( 60^\circ - x \right) \sin\left( 30^\circ + x \right)\]
\[ = \sin\left[ \left( 60^\circ - x \right) + \left( 30^\circ + x \right) \right] (\text{ Using the formula }\sin A \cos B + \cos A \sin B = \sin\left( A + B \right) \]
\[\text{ and taking }A = 60^\circ - x\text{ and }B = 30^\circ + x \]
\[ = \sin90^\circ\]
\[ = 1\]
 = RHS
Hence proved.

  Is there an error in this question or solution?

APPEARS IN

 RD Sharma Solution for Mathematics Class 11 (2019 to Current)
Chapter 7: Values of Trigonometric function at sum or difference of angles
Ex.7.10 | Q: 12.1 | Page no. 19
Solution DIV » DIVProve That: Sin ( π 3 − X ) Cos ( π 6 + X ) + Cos ( π 3 − X ) Sin ( π 6 + X ) = 1 Concept: Trigonometric Functions of Sum and Difference of Two Angles.
S
View in app×