CBSE (Science) Class 11CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

If α, β Are Two Different Values of X Lying Between 0 and 2π, Which Satisfy the Equation 6 Cos X + 8 Sin X = 9, Find the Value of Sin (α + β). - CBSE (Science) Class 11 - Mathematics

Login
Create free account


      Forgot password?

Question

If α, β are two different values of x lying between 0 and 2π, which satisfy the equation 6 cos x + 8 sin x = 9, find the value of sin (α + β).

 

Solution

Given:
6 cosx + 8 sinx = 9
⇒ 6 cosx = 9 - 8 sinx 
⇒ 36 cos2x = (9 - 8 sinx)2
⇒ 36(1 - sin2x) = 81 + 64 sin2x - 144 sinx
⇒100 sin2x - 144 sinx + 45 = 0

Now, α and β are the roots of the given equation; therefore, cos α and cos β are the roots of the above equation.
`=> sinalpha sinbeta = 45/100`  `("Product of roots of a quadratic equation"  ax^2+bx+c=0  "is"  c/a.)`
Again, 6 cosx + 8 sinx = 9
⇒ 8 sinx = 9 - 6 cosx
⇒ 64 sin2x = (9 - 6 cosx)2
⇒ 64(1 - cos2x) = 81 + 36cos2x - 108 cosx
⇒ 100 cos2x - 108 cosx + 17 = 0
Now, α and β are the roots of the given equation; therefore, sin α and sin β are the roots of the above equation.
Therefore, cos α cos β = `17/100`
Hence, cos(α + β) = cos α cos β - sin α sin β
`=17/100-45/100`

`=-28/100`

`=-7/25`
\[\sin \left( \alpha + \beta \right) = \sqrt{1 - \cos^2 \left( \alpha + \beta \right)}\]
\[ = \sqrt{1 - \left( \frac{- 7}{25} \right)^2}\]
\[ = \sqrt{\frac{576}{625}}\]
\[ = \frac{24}{25}\]

  Is there an error in this question or solution?

APPEARS IN

 RD Sharma Solution for Mathematics Class 11 (2019 to Current)
Chapter 7: Values of Trigonometric function at sum or difference of angles
Ex.7.10 | Q: 27 | Page no. 21
Solution If α, β Are Two Different Values of X Lying Between 0 and 2π, Which Satisfy the Equation 6 Cos X + 8 Sin X = 9, Find the Value of Sin (α + β). Concept: Trigonometric Functions of Sum and Difference of Two Angles.
S
View in app×