Question
Find the general solution of the equation sin 2x + sin 4x + sin 6x = 0
Solution
`(sin 2x +sin 6x)+sin 4x =0`
`2sin4x.cos2x+sin4x=0`
`sin4x(2cos2x+1)=0`
`sin 4x=0 or 2cos2x+1=0`
`sin4x=0 or cos2x=-1/2=-cospi/3=cos(pi-pi/3)`
Using `sinx=0=>x=npi`
`sin4x=0`
`4x=npi`
The genral solution is x
`x=(npi)/4`
using `cosx=cosalpha=>x=2mx+-alpha`
`cos2x=cos((2pi)/3)`
`2x=2mpi+-(2pi)/3`
The genral solution is x
`x=mpi+-pi/3` where `m,n in z`
Is there an error in this question or solution?
Solution Find the general solution of the equation sin 2x + sin 4x + sin 6x = 0 Concept: Trigonometric Functions - General Solution of Trigonometric Equation of the Type.