shaalaa.com
S

Question - Triangles on the Same Base and Between the Same Parallels

Account
User


Login
Register


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty
ConceptTriangles on the Same Base and Between the Same Parallels  

Question

In the following figure, ABC is a right triangle right angled at A. BCED, ACFG and ABMN are squares on the sides BC, CA and AB respectively. Line segment AX ⊥ DE meets BC at Y. Show that:-

(i) ΔMBC ≅ ΔABD

(ii) ar (BYXD) = 2 ar(MBC)

(iii) ar (BYXD) = ar(ABMN)

(iv) ΔFCB ≅ ΔACE

(v) ar(CYXE) = 2 ar(FCB)

(vi) ar (CYXE) = ar(ACFG)

(vii) ar (BCED) = ar(ABMN) + ar(ACFG)

Note : Result (vii) is the famous Theorem of Pythagoras. You shall learn a simpler proof of this theorem in Class X.

Solution

You need to to view the solution
Is there an error in this question or solution?

Content BooksVIEW ALL [1]

BooksVIEW ALL [1]

S