shaalaa.com
S

Solution - Triangles on the Same Base and Between the Same Parallels

Account
User


Login
Register


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty
ConceptTriangles on the Same Base and Between the Same Parallels  

Question

Show that the diagonals of a parallelogram divide it into four triangles of equal area.

Solution

You need to to view the solution
Is there an error in this question or solution?

Similar questions

In the following figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC. If AE intersects BC at F, show that

(i) ar (BDE) = 1/4 ar (ABC)

(ii) ar (BDE) = 1/2 ar (BAE)

(iii) ar (ABC) = 2 ar (BEC)

(iv) ar (BFE) = ar (AFD)

(v) ar (BFE) = 2 ar (FED)

(vi) ar (FED) = 1/8 ar (AFC)

[Hint : Join EC and AD. Show that BE || AC and DE || AB, etc.]

view solution

In the given figure, diagonals AC and BD of quadrilateral ABCD intersect at O such that OB = OD. If AB = CD, then show that:

(i) ar (DOC) = ar (AOB)

(ii) ar (DCB) = ar (ACB)

(iii) DA || CB or ABCD is a parallelogram.

[Hint: From D and B, draw perpendiculars to AC.]

view solution

Diagonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar (APB) × ar (CPD) = ar (APD) × ar (BPC).

[Hint : From A and C, draw perpendiculars to BD.]

view solution

In a triangle ABC, E is the mid-point of median AD. Show that ar (BED) = 1/4ar (ABC).

view solution

D, E and F are respectively the mid-points of the sides BC, CA and AB of a ΔABC. Show that

(i) BDEF is a parallelogram.

(ii) ar (DEF) = 1/4ar (ABC)

(iii) ar (BDEF) = 1/2ar (ABC)

view solution

Content BooksVIEW ALL [1]

BooksVIEW ALL [1]

S