Advertisement Remove all ads

sdfsdf - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

In the below figure, a triangle ABC is drawn to circumscribe a circle of radius 3 cm, such that the segments BD and DC are respectively of lengths 6 cm and 9 cm. If the area of Δ ABC is 54 cm2, then find the lengths of sides AB and AC.

Advertisement Remove all ads

Solution

Let the given circle touch the sides AB and AC of the triangle at points F and E respectively and let the length of the line segment AF be x.

Now, it can be observed that:
BF = BD = 6 cm (tangents from point B)
CE = CD = 9 cm (tangents from point C)
AE = AF = x (tangents from point A)

AB = AF + FB = x + 6
BC = BD + DC = 6 + 9 = 15
CA = CE + EA = 9 + x
2s = AB + BC + CA = x + 6 + 15 + 9 + x = 30 + 2x
s = 15 + x
s – a = 15 + x – 15 = x
s – b = 15 + x – (x + 9) = 6
s – c = 15 + x – (6 + x) = 9

`"Area of " triangleABC =sqrt(s(s-a)(s-b)(s-c))`

`54=sqrt((15+x)(x)(6)(9))`

`54=3sqrt(6(15x+x^2))`

`18=sqrt(6(15x+x^2))`

`324=6(15x+x^2)`

`54=15x+x^2`

`x^2+15x-54=0`

`x^2+18x-3x-54=0`

x(x+18)-3(x+18)=0

(x+18)(x-3)=0

x = -18 and x = 3
As distance cannot be negative, x = 3
AC = 3 + 9 = 12
AB = AF + FB = 6 + x = 6 + 3 = 9

Concept: Triangles Examples and Solutions
  Is there an error in this question or solution?

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×