To find the value of ∫(1+logx)x dx the proper substitution is ______ - Mathematics and Statistics

Advertisements
Advertisements
Fill in the Blanks

To find the value of `int ((1 + logx))/x` dx the proper substitution is ______

Advertisements

Solution

1 + log x = t

  Is there an error in this question or solution?
Chapter 1.5: Integration - Q.2

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :`intxlogxdx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions in `(1+ log x)^2/x`


Integrate the functions in `((x+1)(x + logx)^2)/x`


Integrate the functions in `(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int x \sin^3 x\ dx\]

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Integrate the following w.r.t. x : `3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals : `int cos^2x.dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/(25 - 9x^2).dx`


Evaluate the following : `int (1)/(7 + 2x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


integrate the following with respect to the respective variable : `x^2/(x + 1)`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int 1/sqrt((x - 3)(x - 2))` dx = ________________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int (log x)/(log ex)^2` dx = _________


`int (cos2x)/(sin^2x)  "d"x`


`int(log(logx))/x  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int sin^-1 x`dx = ?


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int dx/(1 + e^-x)` = ______


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


`int "cosec"^4x  dx` = ______.


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`int sin^3x cos^3x  dx`


The value of `int dx/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Share
Notifications



      Forgot password?
Use app×