Advertisement Remove all ads

Three Sides Ab, Bc and Ca of a Triangle Abc Are 5x − 3y + 2 = 0, X − 3y − 2 = 0 and X + Y − 6 = 0 Respectively. Find the Equation of the Altitude Through the Vertex A. - Mathematics

Answer in Brief

Three sides AB, BC and CA of a triangle ABC are 5x − 3y + 2 = 0, x − 3y − 2 = 0 and x + y − 6 = 0 respectively. Find the equation of the altitude through the vertex A.

Advertisement Remove all ads

Solution

The sides ABBC and CA of a triangle ABC are as follows:
5x − 3y + 2 = 0                     ... (1)
x − 3y − 2 = 0                       ... (2)
x + y − 6 = 0                         ... (3)
Solving (1) and (3):
x = 2 , y = 4

Thus, AB and CA intersect at A (2, 4).
Let AD be the altitude. 

\[AD \perp BC\]

\[\therefore\] Slope of AD \[\times\] Slope of BC = −1
Here, slope of BC = slope of the line (2) =  \[\frac{1}{3}\]

\[\therefore \text { Slope of AD }\times \frac{1}{3} = - 1 \]

\[ \Rightarrow \text { Slope of AD } = - 3\]

Hence, the equation of the altitude AD passing through A (2, 4) and having slope −3 is

\[y - 4 = - 3\left( x - 2 \right)\]

\[ \Rightarrow 3x + y = 10\]

Concept: Straight Lines - Equation of Family of Lines Passing Through the Point of Intersection of Two Lines
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Exercise 23.1 | Q 12 | Page 78
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×