###### Advertisements

###### Advertisements

Three coins were tossed 30 times simultaneously. Each time the number of heads occurring was noted down as follows:-

0 | 1 | 2 | 2 | 1 | 2 | 3 | 1 | 3 | 0 |

1 | 3 | 1 | 1 | 2 | 2 | 0 | 1 | 2 | 1 |

3 | 0 | 0 | 1 | 1 | 2 | 3 | 2 | 2 | 0 |

Prepare a frequency distribution table for the data given above.

###### Advertisements

#### Solution

By observing the data given above, the required frequency distribution table can be constructed as follows.

Number of heads |
Number of times (frequency) |

0 | 6 |

1 | 10 |

2 | 9 |

3 | 5 |

Total | 30 |

#### APPEARS IN

#### RELATED QUESTIONS

The daily minimum temperatures in degrees Ce1siu& recorded in a certain Arctic region are

as follows:

−12.5, −10.8, −18.6, −8.4, −10.8, −4.2, −4.8, −6.7, −13.2, −11.8, −2.3, 1.2, 2.6, 0, 2.4,

0, 3.2, 2.7, 3.4, 0, − 2.4, − 2.4, 0, 3.2, 2.7, 3.4, 0, − 2.4, − 5.8, -8.9, 14.6, 12.3, 11.5, 7.8,2.9.

Represent them as frequency distribution table taking − 19.9 to − 15 as the first class

interval.

The blood groups of 30 students of class VIII are recorded as follows:

A, B, O, O, AB, O, A, O, B, A, O, B, A, O, O, A, AB, O, A, A, O, O, AB, B, A, O, B, A, B,O

Represent this data in the form of a frequency distribution table. Find out which is the most Common and which is the rarest blood group among these students.

Given below are the cumulative frequencies showing the weights of 685 students of a school. Prepare a frequency distribution table.

Weight (in kg) | No. of students |

Below 25 | 0 |

Below 30 | 24 |

Below 35 | 78 |

Below 40 | 183 |

Below 45 | 294 |

Below 50 | 408 |

Below 55 | 543 |

Below 60 | 621 |

Below 65 | 674 |

Below 70 | 685 |

The difference between the highest and lowest values of the observations is called

In a frequency distribution, the mid-value of a class is 15 and the class intervals is 4. The lower limit of the class is

The number of times a particular item occurs in a given data is called its

The width of each of five continuous classes in a frequency distribution is 5 and the lower class-limit of the lowest class is 10. The upper class-limit of the highest class is ______.

The blood groups of 30 students are recorded as follows: A, B, O, A, AB, O, A, O, B, A, O, B, A, AB, B, A, AB, B, A, A, O, A, AB, B, A, O, B, A, B, A Prepare a frequency distribution table for the data.

The scores (out of 100) obtained by 33 students in a mathematics test are as follows:

69, 48, 84, 58, 48, 73, 83, 48, 66, 58, 84

66, 64, 71, 64, 66, 69, 66, 83, 66, 69, 71

81, 71, 73, 69, 66, 66, 64, 58, 64, 69, 69

Represent this data in the form of a frequency distribution.

The following are the marks (out of 100) of 60 students in mathematics. 16, 13, 5, 80, 86, 7, 51, 48, 24, 56, 70, 19, 61, 17, 16, 36, 34, 42, 34, 35, 72, 55, 75, 31, 52, 28, 72, 97, 74, 45, 62, 68, 86, 35, 85, 36, 81, 75, 55, 26, 95, 31, 7, 78, 92, 62, 52, 56, 15, 63, 25, 36, 54, 44, 47, 27, 72, 17, 4, 30. Construct a grouped frequency distribution table with width 10 of each class starting from 0 – 9.