Share

# Three Cards Are Drawn Successively with Replacement from a Well Shuffled Pack of 52 Cards. Find the Probability Distribution of the Number of Spades. Hence, Find the Mean of the Distribtution. - Mathematics

ConceptRandom Variables and Its Probability Distributions

#### Question

Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the probability distribution of the number of spades. Hence, find the mean of the distribtution.

#### Solution

$\text{ We have } ,$

$p = \text{ probability of getting a spade in a draw } = \frac{13}{52} = \frac{1}{4} \text{ and }$

$q = 1 - p = 1 - \frac{1}{4} = \frac{3}{4}$

$\text{ Let X denote a success of getting a spade in a throw . Then,}$

$\text{ X follows binomial distribution with parameters n = 3 and } p = \frac{1}{4}$

$\therefore P\left( X = r \right) = ^{3}{}{C}_r p^r q^\left( 3 - r \right) =^{3}{}{C}_r \left( \frac{1}{4} \right)^r \left( \frac{3}{4} \right)^\left( 3 - r \right) = \frac{^{3}{}{C}_r 3^\left( 3 - r \right)}{4^3} = \frac{27}{64}\left( \frac{^{3}{}{C}_r}{3^r} \right), \text{ where } , r = 0, 1, 2, 3$

$\text{ So, the probability distribution of X is given by: }$

$P\left( X = r \right) = \frac{27}{64}\left( \frac{^{3}{}{C}_r}{3^r} \right), \text{ where} , r = 0, 1, 2, 3$

$\text{ Now } ,$

$\text{ Mean } , E\left( X \right) = np = 3 \times \frac{1}{4} = \frac{3}{4}$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [3]

Solution Three Cards Are Drawn Successively with Replacement from a Well Shuffled Pack of 52 Cards. Find the Probability Distribution of the Number of Spades. Hence, Find the Mean of the Distribtution. Concept: Random Variables and Its Probability Distributions.
S