Advertisement
Advertisement
Advertisement
Sum
Thirty pairs of values of two variables X and Y are given below. Form a bivariate frequency table. Also, find marginal frequency distributions of X and Y.
X | 110 | 88 | 91 | 115 | 97 | 85 | 85 | 91 | 120 | 95 |
Y | 500 | 800 | 870 | 599 | 625 | 650 | 905 | 700 | 850 | 824 |
X | 82 | 105 | 99 | 90 | 108 | 124 | 90 | 90 | 111 | 89 |
Y | 970 | 609 | 990 | 735 | 600 | 735 | 729 | 840 | 999 | 780 |
X | 112 | 100 | 87 | 92 | 91 | 82 | 96 | 120 | 121 | 122 |
Y | 638 | 850 | 630 | 720 | 695 | 923 | 555 | 810 | 805 | 526 |
Advertisement
Solution
Bivariate frequency table can be prepared by taking class intervals 80 – 90, 90 – 100, …, etc for X and 500 – 600, 600 –700, …., etc for Y.
Bivariate frequency distribution is as follows:
Y/X | 80 – 90 | 90 – 100 | 100 – 110 | 110 – 120 | 120 – 130 | Total (fy) |
500 – 600 | – | I (1) | – | II (2) | I (1) | 4 |
600 – 700 | II (2) | II (2) | II (2) | I (1) | – | 7 |
700 – 800 | I (1) | IIII (4) | – | – | I (1) | 6 |
800 – 900 | I (1) | III (3) | I (1) | – | III (3) | 8 |
900 – 1000 | III (3) | I (1) | – | I (1) | – | 5 |
Total (fx) | 7 | 11 | 3 | 4 | 5 | 30 |
Marginal frequency distribution of X:
X | 80 – 90 | 90 – 100 | 100 – 110 | 110 – 120 | 120 – 130 | Total |
frequency | 7 | 11 | 3 | 4 | 5 | 30 |
Marginal frequency distribution of Y:
Y | 500 – 600 | 600 – 700 | 700 – 800 | 800 – 900 | 900 – 100 | Total |
Frequency | 4 | 7 | 6 | 8 | 5 | 30 |
Concept: Classification and Tabulation of Bivariate Data - Marginal Frequency Distributions
Is there an error in this question or solution?