Advertisement Remove all ads

The Variance of 20 Observations is 5. If Each Observation is Multiplied by 2, Find the Variance of the Resulting Observations. - Mathematics

The variance of 20 observations is 5. If each observation is multiplied by 2, find the variance of the resulting observations.

 
Advertisement Remove all ads

Solution

Let \[x_1 , x_2 , x_3 , . . . , x_{20}\]  be  the 20 given observations.

\[\text{ Variance}  (X) = 5\]

\[\text{ Variance } (X) = {\frac{1}{20}} \times \sum \left( {x_i - X} \right)^2 = 5 (\text{ Here , is the mean of the given observations }  . )\]

Let u1,u2,,u3, ..., u20 be the new observations, such that

\[u_i = 2 x_i (\text{ for }  i = 1, 2, 3, . . . , 20) . . . (1)\]

\[\text{ Mean } = \bar{U} = \frac{\sum^{20}_{i = 1} u_i}{n} \]

\[ = \frac{\sum^{20}_{i = 1} 2 x_i}{20} \left[ \text{ substituting} u_i \text{ from eq (1) and taking n as }  20 \right]\]

\[ = 2 \times \frac{\sum^{20}_{i = 1}{ x_i} }{20} \]

\[ = 2 \bar{X}\]

\[u_i - \bar{U} = 2 x_i - 2 \bar{X} (\text{ for } i = 1, 2, . . . , 20)\]

\[ = 2\left( x_i - \bar{X} \right) \]

\[ \left( u_i - \bar{U} \right)^2 = \left( 2\left( x_i - \bar{X} \right) \right)^2 \left(\text{  squaring both the sides } \right)\]

\[ = 4 \left( x_i - \bar{X} \right)^2 \]

\[ \therefore \sum^{20}_{i = 1} \left( u_i - \bar{U} \right)^2 = \sum 4^{20}_{i = 1} \left( x_i - \bar{X} \right)^2 \]

\[\frac{\sum^{20}_{i = 1} \left( u_i - \bar{U} \right)^2}{20} = \frac{\sum 4^{20}_{i = 1} \left( x_i - \bar{X} \right)^2}{20}\]

\[ = 4 \frac{\sum^{20}_{i = 1} \left( x_i - \bar{X} \right)^2}{20}\]

\[\text{ Variance } (U) = 4 \times \text{ Variance }(X)\]

\[ = 4 \times 5 \]

\[ = 20\]

 Thus, variance of the new observations is 20.

 
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 32 Statistics
Exercise 32.4 | Q 2 | Page 28
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×