# The Value of Sin25° + Sin210° + Sin215° + ... + Sin285° + Sin290° is - Mathematics

MCQ

The value of sin25° + sin210° + sin215° + ... + sin285° + sin290° is

• 7

• 8

• 9.5

• 10

#### Solution

9.5

We have:

$\sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \sin^2 85^\circ + \sin^2 90^\circ$

$= \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \sin^2 \left( 90^\circ - 10^\circ \right) + \sin^2 \left( 90^\circ - 5^\circ \right) + \sin^2 90^\circ$

$= \sin^2 5^\circ + \sin^2 10^\circ + \sin^2 15^\circ + . . . + \cos^2 10^\circ + \cos^2 5^\circ + \sin^2 90^\circ$

$= \left( \sin^2 5^\circ + \cos^2 5^\circ \right) + \left( \sin^2 10^\circ + \cos^2 10^\circ \right) + + \left( \sin^2 15^\circ + \cos^2 15^\circ \right)$

$+ \left( \sin^2 20^\circ + \cos^2 20^\circ \right) + \left( \sin^2 25^\circ + \cos^2 25^\circ \right) + \left( \sin^2 30^\circ + \cos^2 30^\circ \right)$

$+ \left( \sin^2 35^\circ + \cos^2 35^\circ \right) + \left( \sin^2 40^\circ + \cos^2 40^\circ \right) + \sin^2 45^\circ + \sin^2 90^\circ$

$= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + \left( \frac{1}{\sqrt{2}} \right)^2 + \left( 1 \right)^2 \left[ \because \sin^2 \theta + \cos^2 \theta = 1 \right]$

$= 8 + \frac{1}{2} + 1$

$= 9 . 5$

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 5 Trigonometric Functions
Q 16 | Page 42