MCQ
Sum
The value of sin 78° − sin 66° − sin 42° + sin 60° is
Options
- \[\frac{1}{2}\]
- \[- \frac{1}{2}\]
−1
None of these
Advertisement Remove all ads
Solution
None of these
\[\sin78^\circ - \sin66^\circ - \sin42^\circ + \sin60^\circ\]
\[ = \sin78^\circ - \sin42^\circ - \sin66^\circ + \sin60^\circ\]
\[ = 2\sin\left( \frac{78^\circ - 42^\circ}{2} \right)\cos\left( \frac{78^\circ + 42}{2} \right) - \sin66^\circ + \sin60^\circ \left[ \because \sin A - \sin B = 2\sin\left( \frac{A - B}{2} \right)\cos\left( \frac{A + B}{2} \right) \right]\]
\[ = 2\sin18^\circ \cos60^\circ - \sin66^\circ + \sin60^\circ\]
\[ = 2 \times \frac{1}{2}\sin18^\circ - \sin66^\circ + \frac{\sqrt{3}}{2}\]
\[ = \sin18^\circ - \sin66^\circ + \frac{\sqrt{3}}{2}\]
\[ = \frac{\sqrt{5} - 1}{4} - 0 . 914 + \frac{\sqrt{3}}{2}\]
\[ = 0 . 309 - 0 . 914 + 0 . 866\]
\[ = 0 . 261\]
Concept: Transformation Formulae
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads