The value of \[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
Options
a
\[\sqrt{a}\]
−a
\[- \sqrt{a}\]
Solution
\[- \sqrt{a}\]
\[\lim_{x \to 0} \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]
\[\text{ Multiplying } \left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right) and \left( \sqrt{a + x} + \sqrt{a - x} \right) in N^r and D^r : \]
\[ \lim_{x \to 0} \frac{\left( a^2 + x^2 - ax - a^2 - ax - x^2 \right) \left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( a + x - a + x \right) \left( \sqrt{x^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \lim_{x \to 0} \frac{- 2ax \left( \sqrt{a + x} + \sqrt{a - x} \right)}{2x \left( \sqrt{a^2 + ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ = \frac{- a\left( 2\sqrt{a} \right)}{2a} = - \sqrt{a}\]