Advertisement Remove all ads

The Value of [ → a − → B , → B − → C , → C − → a ] , Where - Mathematics

MCQ
Sum

The value of \[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right], \text { where } \left| \vec{a} \right| = 1, \left| \vec{b} \right| = 5, \left| \vec{c} \right| = 3, \text { is }\]

Options

  • 0

  • 1

  • 6

  • none of these

Advertisement Remove all ads

Solution

We have 

\[\left[ \vec{a} - \vec{b} , \vec{b} - \vec{c} , \vec{c} - \vec{a} \right]\]

\[ = \left( \left( \vec{a} - \vec{b} \right) \times \left( \vec{b} - \vec{c} \right) \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \left( \text { By definition of scalar triple product } \right)\]

\[ = \left( \left( \vec{a} - \vec{b} \right) \times \vec{b} - \left( \vec{a} - \vec{b} \right) \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]

\[ = \left( \vec{a} \times \vec{b} - \vec{b} \times \vec{b} - \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]

\[ = \left( \vec{a} \times \vec{b} - 0 - \vec{a} \times \vec{c} + \vec{b} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]

\[ = \left( \vec{a} \times \vec{b} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} - \left( \vec{a} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} + \left( \vec{b} \times \vec{c} \right) . \left( \vec{c} - \vec{a} \right) \hspace{0.167em} \]

\[ = \left( \vec{a} \times \vec{b} \right) . \vec{c} - \left( \vec{a} \times \vec{b} \right) . \vec{a} - \left( \vec{a} \times \vec{c} \right) . \vec{c} + \left( \vec{a} \times \vec{c} \right) . \vec{a} + \left( \vec{b} \times \vec{c} \right) . \vec{c} - \left( \vec{b} \times \vec{c} \right) . \vec{a} \]

\[ = \left[ \vec{a} \vec{b} \vec{c} \right] - \left[ \vec{a} \vec{b} \vec{a} \right] - \left[ \vec{a} \vec{c} \vec{c} \right] + \left[ \vec{a} \vec{c} \vec{a} \right] + \left[ \vec{b} \vec{c} \vec{c} \right] - \left[ \vec{b} \vec{c} \vec{a} \right]\]

\[ = \left[ \vec{a} \vec{b} \vec{c} \right] - 0 - 0 + 0 + 0 - \left[ \vec{a} \vec{b} \vec{c} \right] \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \left( \because \left[ \vec{a} \vec{b} \vec{c} \right] = \left[ \vec{b} \vec{c} \vec{a} \right] = \left[ \vec{c} \vec{a} \vec{b} \right] \right)\]

\[ = 0 \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \hspace{0.167em} \]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 12 Maths
Chapter 26 Scalar Triple Product
MCQ | Q 2 | Page 18
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×