Advertisement Remove all ads

The two adjacent sides of a parallelogram are 2i-4j-5k and 2i+2j+3j Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram. - Mathematics

Sum

The two adjacent sides of a parallelogram are `2hati-4hatj-5hatk and 2 hati+2hatj+3hatj` . Find the two unit vectors parallel to its diagonals. Using the diagonal vectors, find the area of the parallelogram.

Advertisement Remove all ads

Solution

The two adjacent sides of a parallelogram are ` 2hati-4hatj-5hatk and 2 hati+2hatj+3hatj`

suppose `veca=2hati-4hatj-5hatk and vecb=2 hati+2hatj+3hatj`

Then any one diagonal of a parallelogram is `vecP=veca+vecb`

`vecP=veca+vecb`

`=2hati-4hatj-5hatk + 2 hati+2hatj+3hatj`

`=4hati-2hatj-2hatk`

Therefore, unit vector along the diagonal is `vecp/|vecp|=(4hati-2hatj-2hatk)/sqrt(16+4+4)=(2hati-hatj-hatk)/sqrt(6)`

Another diagonal of a parallelogram is `vecP=vecb-veca`

`vecP=vecb-veca`

`=2hati+2hatj+3hatk-2hati+4hatj+5hatk`

`=6hatj+8hatk`

Therefore, unit vector along the diagonal is `vecp/|vecp|=(6hatj+8hatk)/sqrt(36+64)=(6hatj+8hatk)/sqrt(10)=(3hatj+4hatk)/5`

Now

`vecPxxvecP=|[hati,hatj,hatk],[4,-2,-2],[0,6,8]|`

`=hati(-16+12)-hatj(32-0)+hatk(24-0)`

`=-4hati-32hatj+24hatk`

Area of parallelogram= `|vecpxxvecp|/2=sqrt(16+1024+576)/2=sqrt(1616)/2=4sqrt(101)/2=2sqrt101 `

Concept: Geometrical Interpretation of Scalar
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 12 Maths
Chapter 25 Vector or Cross Product
Exercise 25.1 | Q 36 | Page 31
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×