The total cost of x units of output of a firm is given by C = `2/3x + 35/2`. Find the
- cost when output is 4 units
- average cost when output is 10 units
- marginal cost when output is 3 units
Solution
C = `2/3x + 35/2`
i.e., C(x) = `2/3 x + 35/2`
(i) Cost when output is 4 units, i.e., to find when x = 4, C = ?
C(4) = `2/3(4) + 35/2`
C = `8/3 + 35/2`
C = `(8 xx 2 + 35 xx 3)/(3 xx 2) = (16 + 105)/6`
= ₹ `121/6`
(ii) Average cost when output is 10 units, i.e., to find when x = 10, AC = ?
C = `2/3 x + 35/2`
Average Cost (AC) = `"Total cost"/"Output" = ("C"(x))/x = ("f"(x) + k)/x`
`= (2/3 x + 35/2)/x = 2/3 x/x + 35/2 1/x`
AC = `2/3 + 35/2 xx 1/x`
When x = 10, AC = `2/3 + 35/2 xx 1/10`
`= 2/3 + 7/2 xx 1/2 = 2/3 + 7/4`
`= (2 xx 4 + 7xx3)/(3 xx 4)`
`= (8 + 21)/12`
`= 29/12`
Average cost when output is 10 units is ₹ `29/12`
(iii) Marginal cost when output is 3 units
C = `2/3x + 35/2`
Marginal Cost (MC) = `"d"/"dx"`(C)
`= "d"/"dx" (2/3x + 35/2)`
`= 2/3 "d"/"dx" (x) + "d"/"dx" (35/2)`
`= 2/3 (1) + 0 = 2/3`
Marginal cost when output is 3 units will be ₹ `2/3`