The tangent at a point C of a circle and a diameter AB when extended intersect at P. If ∠PCA = 110°, find ∠CBA see figure - Mathematics

Advertisements
Advertisements
Sum

The tangent at a point C of a circle and a diameter AB when extended intersect at P. If ∠PCA = 110°, find ∠CBA see figure

Advertisements

Solution

Here, AB is a diameter of the circle from point C and a tangent is drawn which meets at a point P.

Join OC.

Here, OC is radius.

Since, tangent at any point of a circle is perpendicular to the radius through point of contact circle.

∴ OC ⊥ PC

Now, ∠PCA = 110°   ...[Given]

⇒ ∠PCO + ∠OCA = 110°

⇒ 90° + ∠OCA = 110°

⇒ ∠OCA = 20°

∴ OC = OA = Radius of circle

⇒ ∠OCA = ∠OAC = 20°   ...[Since, two sides are equal, then their opposite angles are equal]

Since, PC is a tangent,

So ∠BCP = ∠CAB = 20°   ...[Angles in a alternate segment are equal]

In ΔPBC,

∠P + ∠C + ∠A = 180°

∠P = 180° – (∠C + ∠A)

= 180° – (110° + 20°)

= 180° – 130°

= 50°

In ΔPBC,

∠BPC + ∠PCB + ∠PBC = 180°  ...[Sum of all interior angles of any triangle is 180°]

⇒ 50° + 20° + ∠PBC = 180°

⇒ ∠PBC = 180° – 70°

⇒ ∠PBC = 110°

Since, APB is a straight line.

∴ ∠PBC + ∠CBA = 180°

⇒ ∠CBA = 180° – 110° = 70°

  Is there an error in this question or solution?
Chapter 9: Circles - Exercise 9.4 [Page 112]

APPEARS IN

NCERT Exemplar Mathematics Class 10
Chapter 9 Circles
Exercise 9.4 | Q 12 | Page 112
RD Sharma Class 10 Maths
Chapter 8 Circles
Exercise 8.2 | Q 40 | Page 39

RELATED QUESTIONS

A point P is 13 cm from the centre of the circle. The length of the tangent drawn from P to the circle is 12cm. Find the radius of the circle.


Write True or False. Give reason for your answer.
A circle is a plane figure.


O is the center of a circle of radius 8cm. The tangent at a point A on the circle cuts a line through O at B such that AB = 15 cm. Find OB


If PT is a tangent at T to a circle whose center is O and OP = 17 cm, OT = 8 cm. Find the length of tangent segment PT.


If from any point on the common chord of two intersecting circles, tangents be drawn to circles, prove that they are equal.


In the fig. ABC is right triangle right angled at B such that BC = 6cm and AB = 8cm. Find the radius of its in circle.


In fig common tangents PQ and RS to two circles intersect at A. Prove that PQ = RS.


Prove that two different circles cannot intersect each other at more than two points.


O is the centre of a circle of radius 10 cm. P is any point in the circle such that OP = 6 cm. A is the point travelling along the circumference. x is the distance from A to P. what are the least and the greatest values of x in cm? what is the position of the points O, P and A at these values?


In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC
at P and OA at Q. Prove that:
(i) ΔOPA ≅ ΔOQC, (ii) ΔBPC ≅ ΔBQA.


In the given figure ABC is an isosceles triangle and O is the centre of its circumcircle. Prove that AP bisects angle BPC .


In the following figure, AB is the diameter of a circle with centre O and CD is the chord with length equal to radius OA.

Is AC produced and BD produced meet at point P; show that ∠APB = 60°


In the given figure, the chord AB of the larger of the two concentric circles, with center O, touches the smaller circle at C. Prove that AC = CB.


In the given figure, a triangle ABC is drawn to circumscribe a circle of radius 3 cm such that the segments BC and DC into which BC is divided by the point of contact D, are of
lengths 6cm and 9cm respectively. If the area of 2 ΔABC = 54cm2 then find the lengths of sides AB and AC.


In the given figure, a circle with center O, is inscribed in a quadrilateral ABCD such that it touches the side BC, AB, AD and CD at points P, Q, R and S respectively. If AB = 29cm, AD = 23cm, ∠B = 90° and DS=5cm then find the radius of the circle.

 


In the adjoining figure, a circle touches all the four sides of a quadrilateral ABCD whose sides are AB=6cm, BC=9cm and CD=8 cm. Find the length of side AD.


In following figure, three circles each of radius 3.5 cm are drawn in such a way that each of them touches the other two. Find the area enclosed between these three circles (shaded region). `["Use" pi=22/7]`


In the given figure, is the centre of the circle. Find ∠CBD.


On a semi-circle with AB as diameter, a point C is taken, so that m (∠CAB) = 30°. Find m(∠ACB) and m (∠ABC).


One chord of a circle is known to be 10 cm. The radius of this circle must be


An equilateral triangle ABC is inscribed in a circle with centre O. The measures of ∠BOCis


The greatest chord of a circle is called its


In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then find PC + PD.


Choose correct alternative answer and fill in the blank. 

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........


Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.


The point of concurrence of all angle bisectors of a triangle is called the ______.


The circle which passes through all the vertices of a triangle is called ______.


Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.


The length of the longest chord of the circle with radius 2.9 cm is ______.


Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.


The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.


Find the length of the chord of a circle in the following when: 

Radius is 6.5 cm and the distance from the centre is 2.5 cm 


AB and CD are two equal chords of a drde intersecting at Pas shown in fig. P is joined to O , the centre of the cirde. Prove that OP bisects  ∠ CPB. 


In following fig. ABC is an equilateral triangle . A circle is drawn with centre A so that ot cuts AB and AC at M and N respectively. Prove that BN = CM.


If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.


In the given figure, O is the centre of a circle, chord PQ ≅ chord RS If ∠ POR = 70° and (arc RS) = 80°, find –
(1) m(arc PR)
(2) m(arc QS)
(3) m(arc QSR)  


In the given figure, chord EF || chord GH. Prove that, chord EG ≅ chord FH. Fill in the blanks and write the proof. 


In the given figure, seg MN is a chord of a circle with centre O. MN = 25, L is a point on chord MN such that ML = 9 and d(O,L) = 5. Find the radius of the circle. 


The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,
find the radius of the circle.


In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.
Prove that:
( i ) ΔOPA ≅ ΔOQC 
( ii ) ΔBPC ≅ ΔBQA


Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?


Suppose you are given a circle. Describe a method by which you can find the center of this circle.


In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle.  seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:
a. Draw ray CE. It intersects the circle at D.
b. Show that CE = ED.
c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof. 


In an equilateral triangle, prove that the centroid and center of the circum-circle (circumcentre) coincide.


If O is the centre of the circle, find the value of x in each of the following figures


Use the figure given below to fill in the blank:

Diameter of a circle is ______.


Use the figure given below to fill in the blank:

EF is a ______ of the circle.


Use the figure given below to fill in the blank:

Diameter = 2 x ________


Use the figure given below to fill in the blank:

________ is a radius of the circle.


Use the figure given below to fill in the blank:

If PQ is 8 cm long, the length of RS = ________


Construct a triangle ABC with AB = 4.2 cm, BC = 6 cm and AC = 5cm. Construct the circumcircle of the triangle drawn.


Construct a triangle PQR with QR = 5.5 cm, ∠Q = 60° and angle R = 45°. Construct the circumcircle cif the triangle PQR.


Construct a triangle PQR in which, PQ = QR = RP = 5.7 cm. Draw the incircle of the triangle and measure its radius.


State, if the following statement is true or false:

The longest chord of a circle is its diameter.


State, if the following statement is true or false:

The diameters of a circle always pass through the same point in the circle.


If the radius of a circle is 5 cm, what will its diameter be?


Draw circle with the radii given below.

2 cm


Draw circle with the radii given below.

3 cm


Draw a circle with the radii given below.

4 cm


Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.


In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram Points in the interior of the circle Points in the exterior of the circle Points on the circle
     

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre


The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle


Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA


A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord


In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?


Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord


A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is


In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is


AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is


The ratio between the circumference and diameter of any circle is _______


A line segment which joins any two points on a circle is a ___________


The longest chord of a circle is __________


The radius of a circle of diameter 24 cm is _______


A part of circumference of a circle is called as _______


Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
15 cm    

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
    1760 cm

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
  24 m  

All the radii of a circle are _______________


A line segment joining any point on the circle to its center is called the _____________ of the circle


A line segment with its end points on the circle is called a ______________


Twice the radius is ________________


Find the diameter of the circle

Radius = 10 cm


Find the diameter of the circle

Radius = 8 cm


Find the diameter of the circle

Radius = 6 cm


Find the radius of the circle

Diameter = 24 cm


Find the radius of the circle

Diameter = 30 cm


Find the radius of the circle

Diameter = 76 cm


Circles with centres A, B and C touch each other externally. If AB = 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.


A, B, C are any points on the circle with centre O. If m(arc BC) = 110° and m(arc AB) = 125°, find measure arc AC.


If O is the center of the circle in the figure alongside, then complete the table from the given information.

The type of arc

Type of circular arc Name of circular arc Measure of circular arc
Minor arc    
Major arc    

In figure, O is the centre of a circle, chord PQ ≅ chord RS. If ∠POR = 70° and (arc RS) = 80°, find

(i) m(arc PR)

(ii) m(arc QS) 

(iii) m(arc QSR)


Given: A circle inscribed in a right angled ΔABC. If ∠ACB = 90° and the radius of the circle is r.

To prove: 2r = a + b – c


In a circle with centre P, chord AB is parallel to a tangent and intersects the radius drawn from the point of contact to its midpoint. If AB = `16sqrt(3)`, then find the radius of the circle


In the figure, a circle touches all the sides of quadrilateral ABCD from the inside. The center of the circle is O. If AD⊥ DC and BC = 38, QB = 27, DC = 25, then find the radius of the circle.


In the given figure, point P is 26 cm away from the centre O of a circle and the length PT of the tangent drawn from P to the circle is 24 cm. Then the radius of the circle is ______ 

 


If the angle between two radii of a circle is 130°, then the angle between the tangents at the ends of the radii is ______


In the following figure, tangents PQ and PR are drawn to a circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ, then ∠RQS.

 


A point P is 10 cm from the center of a circle. The length of the tangent drawn from P to the circle is 8 cm. The radius of the circle is equal to ______ 


If a number of circles touch a given line segment PQ at a point A, then their centres lie on the perpendicular bisector of PQ.


If a number of circles pass through the endpoints P and Q of a line segment PQ, then their centres lie on the perpendicular bisector of PQ.


In figure, tangents PQ and PR are drawn to a circle such that ∠RPQ = 30°. A chord RS is drawn parallel to the tangent PQ. Find the ∠RQS.

[Hint: Draw a line through Q and perpendicular to QP.]


In figure, if AOB is a diameter and ∠ADC = 120°, then ∠CAB = 30°.


The circumcentre of the triangle ABC is O. Prove that ∠OBC + ∠BAC = 90º.


In figure,O is the centre of the circle, ∠BCO = 30°. Find x and y.


In the given figure, O is the centre of the circle. Name all chords of the circle.


In the given figure, O is the centre of the circle. Name a chord, which is not the diameter of the circle.


In the given figure, O is the centre of the circle. Shade the smaller segment of the circle formed by CP.


From the figure, identify a chord.


From the figure, identify two points in the interior.


From the figure, identify a point in the exterior.


From the figure, identify a sector.


Is every chord of a circle also a diameter?


Draw any circle and mark

  1. it's centre
  2. a radius
  3. a diameter
  4. a sector
  5. a segment
  6. a point in its interior
  7. a point in its exterior
  8. an arc

Say true or false:

The centre of a circle is always in its interior.


A figure is in the form of rectangle PQRS having a semi-circle on side QR as shown in the figure. Determine the area of the plot.


A 7 m broad pathway goes around a circular park with a circumference of 352 m. Find the area of road.


If radius of a circle is 5 cm, then find the length of longest chord of a circle.


AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

  1. Draw the figure using the given information.
  2. Find the measures of ∠CAT and ∠ABC with reasons.
  3. Whether ∠CAT and ∠ABC are congruent? Justify your answer.

Share
Notifications



      Forgot password?
Use app×