The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the A.P. - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

The sum of 4th and 8th terms of an A.P. is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the A.P.

Advertisement Remove all ads

Solution

We know that,

an = a + (n − 1) d

a4 = a + (4 − 1) d

a4 = a + 3d

Similarly,

a8 = a + 7d

a6 = a + 5d

a10 = a + 9d

Given that, a4 + a8 = 24

a + 3d + a + 7d = 24

2a + 10d = 24

a + 5d = 12 (1)

a6 + a10 = 44

a + 5d + a + 9d = 44

2a + 14d = 44

a + 7d = 22 (2)

On subtracting equation (1) from (2), we obtain

2d = 22 − 12

2d = 10

d = 5

From equation (1), we obtain

a + 5d = 12

a + 5 (5) = 12

a + 25 = 12

a = −13

a2 = a + d = − 13 + 5 = −8

a3 = a2 + d = − 8 + 5 = −3

Therefore, the first three terms of this A.P. are −13, −8, and −3.

Concept: nth Term of an AP
  Is there an error in this question or solution?
Chapter 5: Arithmetic Progressions - Exercise 5.2 [Page 107]

APPEARS IN

NCERT Class 10 Maths
Chapter 5 Arithmetic Progressions
Exercise 5.2 | Q 18 | Page 107
Share
Notifications



      Forgot password?
View in app×