Advertisements
Advertisements
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
Advertisements
Solution
y = 1 – log x
APPEARS IN
RELATED QUESTIONS
Prove that :
`int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2ax)dx`
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Solve the equation for x: `sin^(1) 5/x + sin^(1) 12/x = pi/2, x != 0`
Show that y = Ae^{Bx} is a solution of the differential equation
For the following differential equation verify that the accompanying function is a solution:
Differential equation  Function 
\[x\frac{dy}{dx} = y\]

y = ax 
Differential equation \[\frac{d^2 y}{d x^2}  \frac{dy}{dx} = 0, y \left( 0 \right) = 2, y'\left( 0 \right) = 1\]
Function y = e^{x} + 1
C' (x) = 2 + 0.15 x ; C(0) = 100
(1 + x^{2}) dy = xy dx
xy (y + 1) dy = (x^{2} + 1) dx
(e^{y} + 1) cos x dx + e^{y} sin x dy = 0
Solve the differential equation \[x\frac{dy}{dx} + \cot y = 0\] given that \[y = \frac{\pi}{4}\], when \[x=\sqrt{2}\]
Find the particular solution of the differential equation \[\frac{dy}{dx} =  4x y^2\] given that y = 1, when x = 0.
Find the particular solution of the differential equation
(1 – y^{2}) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
(x + 2y) dx − (2x − y) dy = 0
Solve the following initial value problem:
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:
\[x\frac{dy}{dx}  y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:
\[x\frac{dy}{dx}  y = \left( x + 1 \right) e^{ x} , y\left( 1 \right) = 0\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
The surface area of a balloon being inflated, changes at a rate proportional to time t. If initially its radius is 1 unit and after 3 seconds it is 2 units, find the radius after time t.
The population of a city increases at a rate proportional to the number of inhabitants present at any time t. If the population of the city was 200000 in 1990 and 250000 in 2000, what will be the population in 2010?
The decay rate of radium at any time t is proportional to its mass at that time. Find the time when the mass will be halved of its initial mass.
Find the curve for which the intercept cutoff by a tangent on xaxis is equal to four times the ordinate of the point of contact.
Find the equation of the curve which passes through the point (1, 2) and the distance between the foot of the ordinate of the point of contact and the point of intersection of the tangent with xaxis is twice the abscissa of the point of contact.
Show that all curves for which the slope at any point (x, y) on it is \[\frac{x^2 + y^2}{2xy}\] are rectangular hyperbola.
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
Which of the following differential equations has y = C_{1} e^{x} + C_{2} e^{−}^{x} as the general solution?
The integrating factor of the differential equation \[x\frac{dy}{dx}  y = 2 x^2\]
The integrating factor of the differential equation \[\left( 1  y^2 \right)\frac{dx}{dy} + yx = ay\left(  1 < y < 1 \right)\] is ______.
If x^{m}y^{n} = (x + y)^{m+n}, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
y^{2} dx + (x^{2} − xy + y^{2}) dy = 0
If a + ib = `("x" + "iy")/("x"  "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2  "y"^2)`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x^{2} – 3y^{2} – 4x = 8.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^22`
Find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities  A  B  C  D  E  F 
Price in 2009 (₹) 
35  80  25  30  80  x 
Price in 2011 (₹)  50  y  45  70  120  105 
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^1 "x"` is
Form the differential equation from the relation x^{2 }+ 4y^{2 }= 4b^{2}
Solve the following differential equation.
x^{2}y dx − (x^{3} + y^{3} ) dy = 0
Solve the following differential equation.
`xy dy/dx = x^2 + 2y^2`
Solve the following differential equation.
`dy/dx + y = e ^x`
Choose the correct alternative.
The differential equation of `y = k_1e^x+ k_2 e^x` is ______.
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
The integrating factor of `dy/dx  y = e^x `is e^{x}, then its solution is
Solve the differential equation:
dr = a r dθ − θ dr
Solve:
(x + y) dy = a^{2 }dx
`xy dy/dx = x^2 + 2y^2`
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae^{5x} + Be^{–5x} is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec^{2}y tan x dy + sec^{2}x tan y dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e^{−x}
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y  1)` when x = `2/3`, y = `1/3`
Solve the differential equation xdx + 2ydy = 0
Solve the differential equation (x^{2} – yx^{2})dy + (y^{2} + xy^{2})dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x^{2}y + y
Solve: `("d"y)/("d"x) + 2/xy` = x^{2}
For the differential equation, find the particular solution (x – y^{2}x) dx – (y + x^{2}y) dy = 0 when x = 2, y = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x^{2} + 2y^{2}
Solve the following differential equation y log y = `(log y  x) ("d"y)/("d"x)`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation y^{2}dx + (xy + x^{2}) dy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x^{2} + xy − y^{2}
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Choose the correct alternative:
General solution of `y  x ("d"y)/("d"x)` = 0 is
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x)  y` = x is e^{–x}
Solve the following differential equation `("d"y)/("d"x)` = x^{2}y + y
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the following differential equation
sec^{2} x tan y dx + sec^{2} y tan x dy = 0
Solution: sec^{2} x tan y dx + sec^{2} y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log f(x) + log c
∴ the general solution is
`square + log tan y` = log c
∴ log tan x . tan y = log c
`square`
This is the general solution.
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x)  1`
∴ (1) becomes `"dv"/("d"x)  1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e^{2y} cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e^{2y} cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(2y))/(2)` = sin x + c_{1}
∴ e^{–2y} = – 2sin x – 2c_{1}
∴ `square` = c, where c = – 2c_{1 }
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha  y cos alpha` = 0, then the value of `a^2 + b^2` is
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
`d/(dx)(tan^1 (sqrt(1 + x^2)  1)/x)` is equal to:
The differential equation (1 + y^{2})x dx – (1 + x^{2})y dy = 0 represents a family of:
Solve the differential equation
`y (dy)/(dx) + x` = 0
Solve the differential equation
`x + y dy/dx` = x^{2} + y^{2}
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.