Advertisement Remove all ads

The Resultant of the Three Concurrent Space Forces at a is 𝑹̅ = (-788𝒋̅) N. Find the Magnitude of F1,F2 and F3 Forces. - Engineering Mechanics

Answer in Brief

The resultant of the three concurrent space forces at A is 𝑹̅ = (-788𝒋̅) N. Find the magnitude of F1,F2 and F3 forces.

Given : A=(0,12,0)
            B=(-9,0,0)
           C=(0,0,5)
          D=(3,0,-4)
 Resultant of forces = (-788𝑗̅) N
To find : Magnitude of forces F1,F2,F3

Advertisement Remove all ads

Solution

Assume π‘ŽΜ…,𝑏̅,𝑐̅ and 𝑑̅ be the position vectors of points A,B,C and D respectively w.r.t origin O
`bar(OA)` = π‘ŽΜ… = 12𝑗̅

`bar(OB)` = 𝑏̅ = -9𝑖̅
`bar(OC)`= 𝑐̅ = 5π‘˜Μ…
`bar(OD)`= 𝑑̅ = 3𝑖̅ - 4π‘˜Μ…

`bar(AB)`= 𝑏̅ - π‘ŽΜ…
      = -9𝑖̅-12𝑗̅
`bar(AC) `= 𝑐̅ – π‘ŽΜ… = 5π‘˜ Μ…- 12𝑗̅
`bar(AD)`= 𝑑̅ - π‘ŽΜ… = 3𝑖̅ -12𝑗 Μ… - 4π‘˜

Sr.no. Vector Magnitude
1. `bar(AB)` 15
2. `bar(AC) ` 13
3. `bar(AD)` 13

 

Sr.no. Vector `"Unit vector "= ("vector")/("Magnitude of vector")`
1. `bar(AB)` `(−3)/5 bar(i) - 4/5 bar(j)`
2. `bar(AC) ` `(−12)/13 bar(j) - 5/13 bar(k)`
3. `bar(AD)` `(3)/13 bar(i) - 12/13 bar(j) - 4/13 bar(K)`

Force along `bar(AB) = bar(F1) = F1 ((−3)/5 bar(i) - 4/5 bar(j))`

Force along `bar(AC) = bar(F2) = F2((−12)/13 bar(j) - 5/13 bar(k))`

Force along  `bar(AB) = bar(F3) = F3( (3)/13 bar(i) - 12/13 bar(j) - 4/13 bar(K))`

Resultant force `bar(R) = bar(F1) +bar(F2)+ bar(F3)`

`-788 bar(j) = F1 ((−3)/5 bar(i) - 4/5 bar(j)+ bar(F2) (−12)/13 bar(j) - 5/13 bar(k) + bar(F3) (3)/13 bar(i) - 12/13 bar(j) - 4/13 bar(K))`

 

`0bar(j)-788 bar(j) + 0bar(k) = F1 ((−3)/5 bar(i) - 4/5 bar(j)+ bar(F2) (−12)/13 bar(j) - 5/13 bar(k) + bar(F3) (3)/13 bar(i) - 12/13 bar(j) - 4/13 bar(K))`

Comparing the equation on both sides 

`(−3F1)/5 + (3F3)/13=0 `………..(1)
`-(4F1)/5--(12F2)/13 -(12F2)/13=-788` ………(2)

`(5F2)/13 -(4F3)/13 = 0 ` ……………(3)
Solving (1),(2) and (3)
F1=153.9063 N
F2=320.125 N
F3=400.1563 N

Sr.no. Force Magnitude
1. F1 153.9063 N
2. F2 320.125 N
3. F3 400.1563 N
Concept: Resultant of concurrent forces
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×