The resultant of the three concurrent space forces at A is πΉΜ = (-788πΜ ) N. Find the magnitude of F1,F2 and F3 forces.
Given : A=(0,12,0)
B=(-9,0,0)
C=(0,0,5)
D=(3,0,-4)
Resultant of forces = (-788πΜ
) N
To find : Magnitude of forces F1,F2,F3
Solution
Assume πΜ
,πΜ
,πΜ
and πΜ
be the position vectors of points A,B,C and D respectively w.r.t origin O
`bar(OA)` = πΜ
= 12πΜ
`bar(OB)` = πΜ
= -9πΜ
`bar(OC)`= πΜ
= 5πΜ
`bar(OD)`= πΜ
= 3πΜ
- 4πΜ
`bar(AB)`= πΜ
- πΜ
= -9πΜ
-12πΜ
`bar(AC) `= πΜ
– πΜ
= 5π Μ
- 12πΜ
`bar(AD)`= πΜ
- πΜ
= 3πΜ
-12π Μ
- 4π
Sr.no. | Vector | Magnitude |
1. | `bar(AB)` | 15 |
2. | `bar(AC) ` | 13 |
3. | `bar(AD)` | 13 |
Sr.no. | Vector | `"Unit vector "= ("vector")/("Magnitude of vector")` |
1. | `bar(AB)` | `(−3)/5 bar(i) - 4/5 bar(j)` |
2. | `bar(AC) ` | `(−12)/13 bar(j) - 5/13 bar(k)` |
3. | `bar(AD)` | `(3)/13 bar(i) - 12/13 bar(j) - 4/13 bar(K)` |
Force along `bar(AB) = bar(F1) = F1 ((−3)/5 bar(i) - 4/5 bar(j))`
Force along `bar(AC) = bar(F2) = F2((−12)/13 bar(j) - 5/13 bar(k))`
Force along `bar(AB) = bar(F3) = F3( (3)/13 bar(i) - 12/13 bar(j) - 4/13 bar(K))`
Resultant force `bar(R) = bar(F1) +bar(F2)+ bar(F3)`
`-788 bar(j) = F1 ((−3)/5 bar(i) - 4/5 bar(j)+ bar(F2) (−12)/13 bar(j) - 5/13 bar(k) + bar(F3) (3)/13 bar(i) - 12/13 bar(j) - 4/13 bar(K))`
`0bar(j)-788 bar(j) + 0bar(k) = F1 ((−3)/5 bar(i) - 4/5 bar(j)+ bar(F2) (−12)/13 bar(j) - 5/13 bar(k) + bar(F3) (3)/13 bar(i) - 12/13 bar(j) - 4/13 bar(K))`
Comparing the equation on both sides
`(−3F1)/5 + (3F3)/13=0 `………..(1)
`-(4F1)/5--(12F2)/13 -(12F2)/13=-788` ………(2)
`(5F2)/13 -(4F3)/13 = 0 ` ……………(3)
Solving (1),(2) and (3)
F1=153.9063 N
F2=320.125 N
F3=400.1563 N
Sr.no. | Force | Magnitude |
1. | F1 | 153.9063 N |
2. | F2 | 320.125 N |
3. | F3 | 400.1563 N |