Advertisement Remove all ads

The radius of planet A is half the radius of planet B. If the mass of A is MA, what must be the mass of B so that the value of g on B is half that of its value on A? - Science and Technology 1

Advertisement Remove all ads
Advertisement Remove all ads
Numerical

The radius of planet A is half the radius of planet B. If the mass of A is MA, what must be the mass of B so that the value of g on B is half that of its value on A?

Advertisement Remove all ads

Solution 1

The acceleration due to gravity of a planet is given as

\[\text{g} = \frac{\text{GM}}{\text{r}^2}\]

For planet A: 

\[\text{g}_\text{A} = \frac{\text{GM}_A}{\text{r}_\text{A}^2}\]

For planet B:

\[\text{g}_{B} = \frac{\text{GM}_\text{B}}{\text{r}_\text{B}^2}\]

Now,

\[\text{g}_\text{B} = \frac{1}{2} \text{g}_\text{A}\] ...(Given) or,

\[\frac{\text{GM}_\text{B}}{\text{r}_\text{B}^2} = \frac{\text{G M}_\text{A}}{2 \text{r}_\text{A}^2}\]

\[\Rightarrow \text{M}_\text{B} = \frac{\text{M}_\text{A} \text{r}_\text{B}^2}{2 \text{r}_\text{A}^2}\]

Given:
\[\text{r}_\text{A} = \frac{1}{2} \text{r}_\text{B}\]

\[\Rightarrow \text{M}_\text{B} = \frac{\text{M}_\text{A} \text{r}_\text{B}^2}{2(\frac{1}{2} \text{r}_\text{B})^2} = 2 \text{M}_\text{A}\]

Thus, the mass of planet B should be twice that of planet A.

Solution 2

radius of planet ‘A’ = RA, radius of planet ‘B’ = R
Mass of planet ‘A’ = MA, mass of planet ‘B’ = MB = ? 
From given... 

`"R"_"A" = ("R"_"B")/2; "g"_"B" = 1/2 "g"_"A"`

`"g" = ("GM")/("R"^2);`

`∴ "g"_"A" = ("GM"_"A")/("R"_"A"^2)`;

`∴ "g"_"B" = ("GM"_"B")/("R"_"B"^2)`

`("GM"_"B")/("R"_"B"^2)`

`("M"_"B")/("R"_"B"^2)  = 1/2(("GM"_"A")/(("RB"/2)^2))`

`("M"_"B")/("R"_"B"^2)  = 1/2 (4("GM"_"A")/(("R"_"B")^2))`

`"M"_"B" = 2 "M"_"A"`

Concept: Acceleration Due to Gravity (Earth’s Gravitational Acceleration)
  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×