Tamil Nadu Board of Secondary EducationSSLC (English Medium) (5 to 8) Class 8

The radius of a circle of diameter 24 cm is _______ - Mathematics

Advertisements
Advertisements
Fill in the Blanks

The radius of a circle of diameter 24 cm is _______

Advertisements

Solution

The radius of a circle of diameter 24 cm is 12 cm

  Is there an error in this question or solution?
Chapter 2: Measurements - Exercise 2.1 [Page 58]

APPEARS IN

Tamil Nadu Board Samacheer Kalvi Class 8th Mathematics Answers Guide
Chapter 2 Measurements
Exercise 2.1 | Q 1. (iv) | Page 58

RELATED QUESTIONS

In Fig. 2, AB is the diameter of a circle with centre O and AT is a tangent. If ∠AOQ = 58°, find ∠ATQ.
 


Prove that in two concentric circles, the chord of the larger circle which touches the smaller circle, is bisected at the point of contact.


Prove that the line segment joining the point of contact of two parallel tangents to a circle is a diameter of the circle.


Find the length of the tangent drawn from a point whose distance from the centre of a circle is 25 cm. Given that the radius of the circle is 7 cm.


Fill in the blanks:

Segment of a circle is the region between an arc and __________ of the circle.


Fill in the blanks:

A circle divides the plane, on which it lies, in __________ parts.


In the fig. ABC is right triangle right angled at B such that BC = 6cm and AB = 8cm. Find the radius of its in circle.


From a point P, two tangents PA and PB are drawn to a circle with center O. If OP =
diameter of the circle shows that ΔAPB is equilateral.


Two circles touch externally at a point P. from a point T on the tangent at P, tangents TQ and TR are drawn to the circles with points of contact Q and E respectively. Prove that TQ = TR.


In the given figure, AB is a chord of length 16 cm of a circle of radius 10 cm. The tangents at A and B intersect at a point P. Find the length of PA.


In fig common tangents PQ and RS to two circles intersect at A. Prove that PQ = RS.


true or false

Sector is the region between the chord and its corresponding arc.


Suppose You Are Given a Circle. Give a Construction to Find Its Centre.


In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC
at P and OA at Q. Prove that:
(i) ΔOPA ≅ ΔOQC, (ii) ΔBPC ≅ ΔBQA.


In the given figure, if arc AB = arc CD, then prove that the quadrilateral ABCD is an isosceles– trapezium (O is the centre of the circle).


In the given figure, AB is a side of a regular six-sided polygon and AC is a side of a regular eight sided polygon inscribed in the circle with centre O. Calculate the sizes of:
(i) ∠AOB,  (ii) ∠ACB  (iii) ∠ABC


In the following figure, AB is the diameter of a circle with centre O and CD is the chord with length equal to radius OA.

Is AC produced and BD produced meet at point P; show that ∠APB = 60°


A point P is 25 cm away from the center of a circle and the length of tangent drawn from P to the circle is 24 cm. Find the radius of the circle.


In the given figure, an isosceles triangle ABC, with AB = AC, circumscribes a circle. Prove that point of contact P bisects the base BC.


PQ is a chord of length 4.8 cm of a circle of radius 3cm. The tangents at P and Q intersect at a point T as shown in the figure. Find the length of TP.


If the difference between the circumference and the radius of a circle is 37 cm, then using`22/7`, the circumference (in cm) of the circle is:


In the given figure, AB and CD are diameters of a circle with centre O. If ∠OBD = 50°, find ∠AOC.


If ABBC and CD are equal chords of a circle with O as centre and AD diameter, than ∠AOB =


In the given figure, if ∠ABC = 45°, then ∠AOC =


Two concentric circles are of diameters 30 cm and 18 cm. Find the length of the chord of the larger circle which touches the smaller circle.


In the given figure, PO \[\perp\]  QO. The tangents to the circle at P and Q intersect at a point T. Prove that PQ and OTare right bisector of each other.


In the given figure, PA and PB are tangents to the circle from an external point P. CD is another tangent touching the circle at Q. If PA = 12 cm, QC = QD = 3 cm, then find PC + PD.


Choose correct alternative answer and fill in the blank. 

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........


Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.


The point of concurrence of all angle bisectors of a triangle is called the ______.


The circle which passes through all the vertices of a triangle is called ______.


Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.


The length of the longest chord of the circle with radius 2.9 cm is ______.


Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.


The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.


Find the length of the chord of a circle in the following when: 

Radius is 1. 7cm and the distance from the centre is 1.5 cm 


If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.


Find the area of a circle of radius 7 cm.



In the above figure, `square`XLMT is a rectangle. LM = 21 cm, XL = 10.5 cm. Diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of non-shaded region.


In the given figure, O is the centre of a circle, chord PQ ≅ chord RS If ∠ POR = 70° and (arc RS) = 80°, find –
(1) m(arc PR)
(2) m(arc QS)
(3) m(arc QSR)  


The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,
find the radius of the circle.


In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.
Prove that:
( i ) ΔOPA ≅ ΔOQC 
( ii ) ΔBPC ≅ ΔBQA


Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?


Suppose you are given a circle. Describe a method by which you can find the center of this circle.


In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle.  seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:
a. Draw ray CE. It intersects the circle at D.
b. Show that CE = ED.
c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof. 


In an equilateral triangle, prove that the centroid and center of the circum-circle (circumcentre) coincide.


Two concentric circles with center O have A, B, C, D as the points of intersection with the lines L shown in the figure. If AD = 12 cm and BC s = 8 cm, find the lengths of AB, CD, AC and BD.


In the given figure, the area enclosed between the two concentric circles is 770 cm2. If the radius of the outer circle is 21 cm, calculate the radius of the inner circle.


If O is the centre of the circle, find the value of x in each of the following figures


Use the figure given below to fill in the blank:

If the length of RS is 5 cm, the length of PQ = _______


Draw circle with diameter:  6 cm

In above case, measure the length of the radius of the circle drawn.


Draw circle with diameter:  8.4 cm

In above case, measure the length of the radius of the circle drawn.


Draw a line AB = 8.4 cm. Now draw a circle with AB as diameter. Mark a point C on the circumference of the circle. Measure angle ACB.


Construct a triangle ABC with AB = 4.2 cm, BC = 6 cm and AC = 5cm. Construct the circumcircle of the triangle drawn.


Construct a triangle ABC with AB = 5 cm, ∠B = 60° and BC = 6. 4 cm. Draw the incircle of the triangle ABC.


Can the length of a chord of a circle be greater than its diameter ? Explain.


Draw a circle of diameter 7 cm. Draw two radii of this circle such that the angle between these radii is 90°. Shade the minor sector obtained. Write a special name for this sector.


State, if the following statement is true or false:

If the end points A and B of the line segment lie on the circumference of a circle, AB is a diameter.


State, if the following statement is true or false:

Every diameter bisects a circle and each part of the circle so obtained is a semi-circle.


If the radius of a circle is 5 cm, what will its diameter be?


Draw circle with the radii given below.

2 cm


Draw circle with the radii given below.

3 cm


Draw a circle with the radii given below.

4 cm


Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.


In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram Points in the interior of the circle Points in the exterior of the circle Points on the circle
     

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre


The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle


Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA


A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord


In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?


Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord


A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is


In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is


AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is


The ratio between the circumference and diameter of any circle is _______


A line segment which joins any two points on a circle is a ___________


The longest chord of a circle is __________


A part of circumference of a circle is called as _______


Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
15 cm    

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
    1760 cm

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
  24 m  

All the radii of a circle are _______________


The ______________ is the longest chord of a circle


A line segment joining any point on the circle to its center is called the _____________ of the circle


A line segment with its end points on the circle is called a ______________


Twice the radius is ________________


Find the diameter of the circle

Radius = 10 cm


Find the diameter of the circle

Radius = 8 cm


Find the diameter of the circle

Radius = 6 cm


Find the radius of the circle

Diameter = 24 cm


Find the radius of the circle

Diameter = 76 cm


Circles with centres A, B and C touch each other externally. If AB = 3 cm, BC = 3 cm, CA = 4 cm, then find the radii of each circle.


In the adjoining figure, seg DE is the chord of the circle with center C. seg CF⊥ seg DE and DE = 16 cm, then find the length of DF?


If O is the center of the circle in the figure alongside, then complete the table from the given information.

The type of arc

Type of circular arc Name of circular arc Measure of circular arc
Minor arc    
Major arc    

In the figure, segment PQ is the diameter of the circle with center O. The tangent to the tangent circle drawn from point C on it, intersects the tangents drawn from points P and Q at points A and B respectively, prove that ∠AOB = 90°


In a circle with centre P, chord AB is parallel to a tangent and intersects the radius drawn from the point of contact to its midpoint. If AB = `16sqrt(3)`, then find the radius of the circle


In the figure, O is the center of the circle. Line AQ is a tangent. If OP = 3, m(arc PM) = 120°, then find the length of AP.


In the figure, O is the centre of the circle, and ∠AOB = 90°, ∠ABC = 30°. Then find ∠CAB.


In the figure, a circle with center P touches the semicircle at points Q and C having center O. If diameter AB = 10, AC = 6, then find the radius x of the smaller circle.


In the figure, a circle touches all the sides of quadrilateral ABCD from the inside. The center of the circle is O. If AD⊥ DC and BC = 38, QB = 27, DC = 25, then find the radius of the circle.


Circles with centres A, B and C touch each other externally. If AB = 36, BC = 32, CA = 30, then find the radii of each circle.


A line through the point of contact and passing through centre of the circle is known as ______


If the angle between two tangents drawn from a point P to a circle of radius ‘a’ and centre ‘O’ is 90°, then OP = ______ 


If a hexagon ABCDEF circumscribe a circle, prove that AB + CD + EF = BC + DE + FA.


If A, B, C, D are four points such that ∠BAC = 30° and ∠BDC = 60°, then D is the centre of the circle through A, B and C.


AB and AC are two equal chords of a circle. Prove that the bisector of the angle BAC passes through the centre of the circle.


If a line segment joining mid-points of two chords of a circle passes through the centre of the circle, prove that the two chords are parallel.


In the given figure, O is the centre of the circle. Name a chord, which is not the diameter of the circle.


In the given figure, O is the centre of the circle. Shade the smaller segment of the circle formed by CP.


From the figure, identify the centre of the circle.

 


From the figure, identify three radii.

 


From the figure, identify a diameter.

 


From the figure, identify a chord.


From the figure, identify a sector.


From the figure, identify a segment.


Is every diameter of a circle also a chord?


Draw any circle and mark

  1. it's centre
  2. a radius
  3. a diameter
  4. a sector
  5. a segment
  6. a point in its interior
  7. a point in its exterior
  8. an arc

A figure is in the form of rectangle PQRS having a semi-circle on side QR as shown in the figure. Determine the area of the plot.


A circle of radius 3 cm with centre O and a point L outside the circle is drawn, such that OL = 7 cm. From the point L, construct a pair of tangents to the circle. Justify LM and LN are the two tangents.


AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

  1. Draw the figure using the given information.
  2. Find the measures of ∠CAT and ∠ABC with reasons.
  3. Whether ∠CAT and ∠ABC are congruent? Justify your answer.

Share
Notifications



      Forgot password?
Use app×