The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______. - Mathematics and Statistics

Advertisements
Advertisements
MCQ
Fill in the Blanks

The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.

Options

  • D < 60

  • D > 60

  • D < 20

  • D > 20

Advertisements

Solution

The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is D < 20.

  Is there an error in this question or solution?
Chapter 1.4: Applications of Derivatives - Q.1

RELATED QUESTIONS

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Test whether the function is increasing or decreasing. 

f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0, 


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Function f(x) = ax is increasing on R, if


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly increasing : f(x) = 3 + 3x – 3x2 + x3 


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.


Show that f(x) = x – cos x is increasing for all x.


Show that y = `log (1 + x) – (2x)/(2 + x), x > - 1` is an increasing function on its domain.


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Solve the following : Find the intervals on which the function y = xx, (x > 0) is increasing and decreasing.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Show that f(x) = x – cos x is increasing for all x.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The slope of tangent at any point (a, b) is also called as ______.


If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______


The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is  ______


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


Show that the function f(x) = `(x - 2)/(x + 1)`, x ≠ – 1 is increasing


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = 9 - x5 - x7 is decreasing for


The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.


A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______ 


The function f(x) = x3 - 3x is ______.


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


For every value of x, the function f(x) = `1/7^x` is ______ 


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Which of the following graph represent the strictly increasing function.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Function given by f(x) = sin x is strictly increasing in.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


Show that function f(x) = tan x is increasing in `(0, π/2)`.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


If f(x) = x + cosx – a then ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


y = log x satisfies for x > 1, the inequality ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.


A function f is said to be increasing at a point c if ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


The intevral in which the function f(x) = 5 + 36x – 3x2 increases will be ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications



      Forgot password?
Use app×