Advertisement Remove all ads

The Points (5, –4, 2), (4, –3, 1), (7, 6, 4) and (8, –7, 5) Are the Vertices of - Mathematics

MCQ

The points (5, –4, 2), (4, –3, 1), (7, 6, 4) and (8, –7, 5) are the vertices of 

Options

  • a rectangle

  •  a square 

  • a parallelogram 

  •  none of these

Advertisement Remove all ads

Solution

None of these
Suppose:
A(5, –4, 2)
B(4, –3, 1)
C(7, 6, 4)
D(8, –7, 5)

\[AB = \sqrt{\left( 4 - 5 \right)^2 + \left( - 3 + 4 \right)^2 + \left( 1 - 2 \right)^2}\]
\[ = \sqrt{\left( - 1 \right)^2 + \left( 1 \right)^2 + \left( - 1 \right)^2}\]
\[ = \sqrt{1 + 1 + 1} = \sqrt{3}\]
\[BC = \sqrt{\left( 7 - 4 \right)^2 + \left( 6 + 3 \right)^2 + \left( 4 - 1 \right)^2}\]
\[ = \sqrt{\left( 3 \right)^2 + \left( 9 \right)^2 + \left( 3 \right)^2}\]
\[ = \sqrt{9 + 81 + 9} = \sqrt{99} = 3\sqrt{11}\]
\[CD = \sqrt{\left( 8 - 7 \right)^2 + \left( - 7 - 6 \right)^2 + \left( 5 - 4 \right)^2}\]
\[ = \sqrt{\left( 1 \right)^2 + \left( - 13 \right)^2 + \left( 1 \right)^2}\]
\[ = \sqrt{1 + 169 + 1} = \sqrt{171}\]
\[DA = \sqrt{\left( 8 - 5 \right)^2 + \left( - 7 + 4 \right)^2 + \left( 5 - 2 \right)^2}\]
\[ = \sqrt{\left( 3 \right)^2 + \left( - 3 \right)^2 + \left( 3 \right)^2}\]
\[ = \sqrt{9 + 9 + 9} = \sqrt{27} = 3\sqrt{3}\]

We see that none of the sides are equal. 

Concept: Three Dimessional Space
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 28 Introduction to three dimensional coordinate geometry
Q 5 | Page 23
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×