Advertisement Remove all ads

The Points a (2, 0), B (9, 1), C (11, 6) and D (4, 4) Are the Vertices of a Quadrilateral Abcd. Determine Whether Abcd is a Rhombus Or Not. - Mathematics

Sum

The points A (2, 0), B (9, 1), C (11, 6) and D (4, 4) are the vertices of a quadrilateral ABCD. Determine whether ABCD is a rhombus or not.

Advertisement Remove all ads

Solution

The given points are A (2, 0), B (9, 1), C (11, 6) and D (4, 4).
Let us find the length of all the sides of the quadrilateral ABCD.

\[AB = \sqrt{\left( 2 - 9 \right)^2 + \left( 0 - 1 \right)^2} = \sqrt{50} = 5\sqrt{2}\]
\[BC = \sqrt{\left( 11 - 9 \right)^2 + \left( 6 - 1 \right)^2} = \sqrt{29}\]
\[CD = \sqrt{\left( 4 - 11 \right)^2 + \left( 4 - 6 \right)^2} = \sqrt{49 + 4} = \sqrt{53}\]
\[AD = \sqrt{\left( 4 - 2 \right)^2 + \left( 4 - 0 \right)^2} = \sqrt{4 + 16} = 2\sqrt{5}\]
\[\because AB \neq BC \neq CD \neq AD\], quadrilateral ABCD is not a rhombus.
Concept: Brief Review of Cartesian System of Rectanglar Co-ordinates
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 22 Brief review of cartesian system of rectangular co-ordinates
Exercise 22.1 | Q 4 | Page 13
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×