Advertisement Remove all ads

The Perpendicular from the Origin to the Line Y = Mx + C Meets It at the Point (−1, 2). Find the Values of M and C. - Mathematics

Answer in Brief

The perpendicular from the origin to the line y = mx + c meets it at the point (−1, 2). Find the values of m and c.

Advertisement Remove all ads

Solution

The given line is y = mx + c which can be written as \[mx - y + c = 0\]        ... (1)

The slope of the line perpendicular to y = mx + c is \[- \frac{1}{m}\]

So, the equation of the line with slope \[- \frac{1}{m}\] and passing through the origin is \[y = - \frac{1}{m}x\]

\[x + my = 0\]               ... (2)
Solving eq (1) and eq (2) by cross multiplication, we get

\[\frac{x}{mc - 0} = \frac{y}{0 - c} = \frac{1}{- 1 - m^2}\]

\[ \Rightarrow x = - \frac{mc}{m^2 + 1}, y = \frac{c}{m^2 + 1}\]

Thus, the point of intersection of the perpendicular from the origin to the line y = mx + c is \[\left( - \frac{mc}{m^2 + 1}, \frac{c}{m^2 + 1} \right)\] 

It is given that the perpendicular from the origin to the line y = mx + c meets it at the point (\[-\] 1,2)

\[- \frac{mc}{m^2 + 1} = - 1 \text { and } \frac{c}{m^2 + 1} = 2\]

\[ \Rightarrow m^2 + 1 = mc \text { and } m^2 + 1 = \frac{c}{2}\]

\[ \Rightarrow mc = \frac{c}{2}\]

\[ \Rightarrow m = \frac{1}{2}\]

Now, substituting the value of m in \[m^2 + 1 = mc\] we get

\[\frac{1}{4} + 1 = \frac{1}{2}c\]

\[ \Rightarrow c = \frac{5}{2}\]

Hence, 

\[m = \frac{1}{2} \text { and } c = \frac{5}{2}\].

Concept: Shifting of Origin
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 23 The straight lines
Exercise 23.12 | Q 17 | Page 93
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×