The perimeter of a triangular field is 240 dm. If two of its sides are 78 dm and 50 dm, find the length of the perpendicular on the side of length 50 dm from the opposite vertex.

Advertisement Remove all ads

#### Solution

ABC be the triangle, Here a = 78 dm = AB,

BC = b = 50 dm

Now, perimeter = 240 dm

⇒ AB + BC + CA = 240 dm

⇒ AC = 240 – BC – AB

⇒ AC = 112 dm

Now, 2s = AB + BC + CA

⇒ 2s = 240

⇒ s = 120 dm

∴ Area of ΔABC =`sqrt(s(s-a)(s-b)(s-b))` by heron's formula

=`sqrt(120(120-78)(120-50)(120-112))`

`=sqrt(120xx42xx70xx8)`

1680 `dm^2`

πΏππ‘ π΄π· ππ ππππππππππ’ππππ ππ π΅πΆ

Area of ΔABC = `1/2xx ABxxBC `(area of triangle=`(1/2xxbxxh)`

`=1/2xx ADxxBC=1680 `

`⇒AD=(2xx1680)/50=67.2dm`

Concept: Area of a Triangle by Heron's Formula

Is there an error in this question or solution?

Advertisement Remove all ads

#### APPEARS IN

Advertisement Remove all ads

Advertisement Remove all ads