Advertisement Remove all ads

The Parametric Equations of a Parabola Are X = T2 + 1, Y = 2t + 1. the Cartesian Equation of Its Directrix is - Mathematics

MCQ

The parametric equations of a parabola are x = t2 + 1, y = 2t + 1. The cartesian equation of its directrix is 

Options

  • x = 0 

  • x + 1 = 0 

  • y = 0 

  •  none of these 

Advertisement Remove all ads

Solution

 x = 0 

Given:
x = t2 + 1         (1)
y = 2t + 1         (2)
From (1) and (2):

\[x = \left( \frac{y - 1}{2} \right)^2 + 1\] 

On simplifying: \[\left( y - 1 \right)^2 = 4\left( x - 1 \right)\] 

Let \[Y = y - 1 \text{ and } X = x - 1\]

∴ \[Y^2 = 4X\] 

Comparing it with y2 = 4ax:
= 1
Therefore, the equation of the directrix is X = −a , i.e.

\[x - 1 = - 1 \Rightarrow x = 0\]

 

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 25 Parabola
Q 5 | Page 29
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×