# The Number of Integral Values of λ for Which the Equation X2 + Y2 + λX + (1 − λ) Y + 5 = 0 is the Equation of a Circle Whose Radius Cannot Exceed 5, is - Mathematics

MCQ

The number of integral values of λ for which the equation x2 + y2 + λx + (1 − λ) y + 5 = 0 is the equation of a circle whose radius cannot exceed 5, is

#### Options

• 14

• 18

• 16

• none of these

#### Solution

According to the question:

$\sqrt{\left( \frac{- \lambda}{2} \right)^2 + \left( \frac{\lambda - 1}{2} \right)^2 - 5} \leq 5$

$\Rightarrow \left( \frac{- \lambda}{2} \right)^2 + \left( \frac{\lambda - 1}{2} \right)^2 \leq 30$

$\lambda^2 + \left( \lambda - 1 \right)^2 \leq 120$

$\Rightarrow 2 \lambda^2 - 2\lambda - 119 \leq 0$

$\Rightarrow \lambda = \frac{2 \pm \sqrt{2^2 - 4\left( 2 \right)\left( - 119 \right)}}{2\left( 2 \right)}$

$\Rightarrow \lambda = \frac{2 \pm \sqrt{956}}{4}$

$\Rightarrow \lambda = \frac{1 \pm \sqrt{239}}{2}$

$\Rightarrow \lambda = - 7 . 23, 8 . 23$

$\Rightarrow - 7 . 23 \leq \lambda \leq 8 . 23$

$\Rightarrow \lambda = - 7, - 6, - 5, - 4, - 3, - 2, - 1, 0, 1, 2, 3, 4, 5, 6, 7, 8 \left( If \lambda \in \mathbb{Z} \right)$

Thus, the number of integral values of

$\lambda$ is 16.
Concept: Circle - Standard Equation of a Circle
Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 24 The circle
Q 6 | Page 39