Sum
The non zero vectors `bar("a")` and `bar("b")` are not collinear find the value of `lambda` and `mu`: if `bar("a") + 3bar("b") = 2lambdabar("a") - mubar("b")`
Advertisement Remove all ads
Solution
`bar("a") + 3bar("b") = 2lambdabar("a") - mubar("b")`
∴ `(1 - 2lambda)bar("a") = (-3 - mu)bar("b")`
∴ `(1 - 2llambda)bar("a") + (3 + mu)bar("b")` = 0
If two vectors `bar("a")` and `bar("b")` are not collinear and `"m"bar("a") + "n"bar("b")` = 0, then m = 0, n = 0
∴ `1 - 2lambda` = 0 and `3 + mu` = 0
∴ `lambda = 1/2` and `mu` = – 3
Concept: Vector Joining Two Points
Is there an error in this question or solution?
APPEARS IN
Advertisement Remove all ads