Advertisement Remove all ads

The Locus of the Points of Trisection of the Double Ordinates of a Parabola is a - Mathematics


The locus of the points of trisection of the double ordinates of a parabola is a 


  • pair of lines 

  •  circle

  • parabola 

  • straight line 

Advertisement Remove all ads



Suppose PQ is a double ordinate of the parabola \[y^2 = 4ax\] 

Let R and be the points of trisection of the double ordinates.
Let \[\left( h, k \right)\] be the coordinates of R. 

Then, we have:
OL = h  and RL = k  

\[\therefore RS = RL + LS = k + k = 2k\]
\[ \Rightarrow PR = RS = SQ = 2k\]
\[ \Rightarrow LP = LR + RP = k + 2k = 3k\]

Thus, the coordinates of P are \[\left( h, 3k \right)\] which lie on \[y^2 = 4ax\] 

∴ \[9 k^2 = 4ah\] 

Hence, the locus of the point (hk) is \[9 y^2 = 4ax\]  i.e.  \[y^2 = \left( \frac{4a}{9} \right)x\] which represents a parabola.

  Is there an error in this question or solution?
Advertisement Remove all ads


RD Sharma Class 11 Mathematics Textbook
Chapter 25 Parabola
Q 7 | Page 29
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads

View all notifications

      Forgot password?
View in app×