Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

The Locus of the Point of Intersection of the Lines √ 3 X − Y − 4 √ 3 λ = 0 and √ 3 λ + λ − 4 √ 3 = 0 is a Hyperbola of Eccentricity - Mathematics

MCQ

The locus of the point of intersection of the lines \[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda  + \lambda - 4\sqrt{3} = 0\]  is a hyperbola of eccentricity

Options

  • 1

  • 2

  • 3

  • 4

Advertisement Remove all ads

Solution

2

The equations of lines 

\[\sqrt{3}x - y - 4\sqrt{3}\lambda = 0 \text { and } \sqrt{3}\lambda + \lambda - 4\sqrt{3} = 0\] can be rewritten as \[\sqrt{3}x - y = 4\sqrt{3}\lambda \text { and } \sqrt{3}\lambda + \lambda = 4\sqrt{3}\]  respectively.

Multiplying the equations: 

\[3\lambda x^2 - \lambda y^2 = 48\lambda\]

\[ \Rightarrow \frac{3\lambda x^2}{48\lambda} - \frac{\lambda y^2}{48\lambda} = 1\]

\[ \Rightarrow \frac{x^2}{16} - \frac{y^2}{48} = 1\]

This is the standard equation of a hyperbola, where  \[a^2 = 16 \text { and }b^2 = 48\].

\[\text { Eccentricity }, e = \sqrt{\frac{a^2 + b^2}{a^2}}\]

\[ \Rightarrow e = \sqrt{\frac{16 + 48}{16}}\]

\[ \Rightarrow e = \frac{8}{4}\]

\[ \Rightarrow e = 2\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 27 Hyperbola
Q 20 | Page 20
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×