Advertisement Remove all ads

The Latus-rectum of the Conic 3x2 + 4y2 − 6x + 8y − 5 = 0 is - Mathematics

MCQ
Sum

The latus-rectum of the conic 3x2 + 4y2 − 6x + 8y − 5 = 0 is

Options

  • 3

  • \[\frac{\sqrt{3}}{2}\]

     

  • \[\frac{2}{\sqrt{3}}\]

     

  • none of these

Advertisement Remove all ads

Solution

 3
\[3 x^2 + 4 y^2 - 6x + 8y - 5 = 0\]
\[ \Rightarrow 3( x^2 - 2x) + 4( y^2 + 2y) = 5\]
\[ \Rightarrow 3( x^2 - 2x + 1) + 4( y^2 + 2y + 1) = 5 + 3 + 4\]
\[ \Rightarrow 3(x - 1 )^2 + 4(y + 1 )^2 = 12\]
\[ \Rightarrow \frac{(x - 1 )^2}{4} + \frac{(y + 1 )^2}{3} = 1\]
\[\text{ So, }a = 2\text{ and }b = \sqrt{3}\]
\[ \therefore\text{ Latus rectum }= \frac{2 b^2}{a}\]
\[ = 2\frac{\left[ \sqrt{3} \right]^2}{2}\]
\[ = 3\]

Concept: Introduction of Ellipse
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 26 Ellipse
Q 9 | Page 28
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×