Advertisements
Advertisements
The function y = e^{x} is solution ______ of differential equation
Advertisements
Solution
`("d"y)/("d"x) = y`
APPEARS IN
RELATED QUESTIONS
Prove that :
`int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2ax)dx`
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Solve the equation for x: `sin^(1) 5/x + sin^(1) 12/x = pi/2, x != 0`
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that \[y = e^{m \cos^{ 1} x}\] satisfies the differential equation \[\left( 1  x^2 \right)\frac{d^2 y}{d x^2}  x\frac{dy}{dx}  m^2 y = 0\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation  Function 
\[x\frac{dy}{dx} = y\]

y = ax 
For the following differential equation verify that the accompanying function is a solution:
Differential equation  Function 
\[x + y\frac{dy}{dx} = 0\]

\[y = \pm \sqrt{a^2  x^2}\]

Differential equation \[x\frac{dy}{dx} = 1, y\left( 1 \right) = 0\]
Function y = log x
Differential equation \[\frac{dy}{dx} = y, y\left( 0 \right) = 1\]
Function y = e^{x}
Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
(e^{y} + 1) cos x dx + e^{y} sin x dy = 0
\[x^2 \frac{dy}{dx} = x^2 + xy + y^2 \]
Solve the following initial value problem:
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:
\[x\frac{dy}{dx}  y = \log x, y\left( 1 \right) = 0\]
Solve the following initial value problem:
\[\left( 1 + y^2 \right) dx + \left( x  e^{ \tan^{ 1} y} \right) dx = 0, y\left( 0 \right) = 0\]
Solve the following initial value problem:
\[x\frac{dy}{dx} + y = x \cos x + \sin x, y\left( \frac{\pi}{2} \right) = 1\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y \cot x = 4x\text{ cosec }x, y\left( \frac{\pi}{2} \right) = 0\]
In a culture, the bacteria count is 100000. The number is increased by 10% in 2 hours. In how many hours will the count reach 200000, if the rate of growth of bacteria is proportional to the number present?
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
The slope of the tangent at a point P (x, y) on a curve is \[\frac{ x}{y}\]. If the curve passes through the point (3, −4), find the equation of the curve.
The normal to a given curve at each point (x, y) on the curve passes through the point (3, 0). If the curve contains the point (3, 4), find its equation.
Write the differential equation representing the family of straight lines y = Cx + 5, where C is an arbitrary constant.
The differential equation obtained on eliminating A and B from y = A cos ωt + B sin ωt, is
The solution of the differential equation \[\frac{dy}{dx} = \frac{ax + g}{by + f}\] represents a circle when
The solution of the differential equation y_{1} y_{3} = y_{2}^{2} is
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
The integrating factor of the differential equation \[x\frac{dy}{dx}  y = 2 x^2\]
If x^{m}y^{n} = (x + y)^{m+n}, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
y^{2} dx + (x^{2} − xy + y^{2}) dy = 0
If a + ib = `("x" + "iy")/("x"  "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2  "y"^2)`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x^{2} – 3y^{2} – 4x = 8.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^22`
Find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities  A  B  C  D  E  F 
Price in 2009 (₹) 
35  80  25  30  80  x 
Price in 2011 (₹)  50  y  45  70  120  105 
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^1 "x"` is
In the following example, verify that the given function is a solution of the corresponding differential equation.
Solution  D.E. 
y = xn  `x^2(d^2y)/dx^2  n xx (xdy)/dx + ny =0` 
Determine the order and degree of the following differential equations.
Solution  D.E 
y = ae^{x }+ be^{−x}  `(d^2y)/dx^2= 1` 
Find the differential equation whose general solution is
x^{3} + y^{3} = 35ax.
For each of the following differential equations find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)` ,
when y = 0, x = 1
For the following differential equation find the particular solution.
`dy/ dx = (4x + y + 1),
when y = 1, x = 0
Solve the following differential equation.
`dy /dx +(x2 y)/ (2x y)= 0`
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative.
The differential equation of `y = k_1e^x+ k_2 e^x` is ______.
The solution of `dy/ dx` = 1 is ______
Choose the correct alternative.
The integrating factor of `dy/dx  y = e^x `is e^{x}, then its solution is
Solve the differential equation:
`e^(dy/dx) = x`
x^{2}y dx – (x^{3} + y^{3}) dy = 0
`dy/dx = log x`
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae^{5x} + Be^{–5x} is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec^{2}y tan x dy + sec^{2}x tan y dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e^{−x}
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y  1)` when x = `2/3`, y = `1/3`
Solve the differential equation xdx + 2ydy = 0
Solve the differential equation (x^{2} – yx^{2})dy + (y^{2} + xy^{2})dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x^{2}y + y
Solve: `("d"y)/("d"x) + 2/xy` = x^{2}
For the differential equation, find the particular solution (x – y^{2}x) dx – (y + x^{2}y) dy = 0 when x = 2, y = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x^{2} + 2y^{2}
Solve the following differential equation y log y = `(log y  x) ("d"y)/("d"x)`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation y^{2}dx + (xy + x^{2}) dy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x^{2} + xy − y^{2}
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
Choose the correct alternative:
General solution of `y  x ("d"y)/("d"x)` = 0 is
The solution of differential equation `x^2 ("d"^2y)/("d"x^2)` = 1 is ______
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x)  y` = x is e^{–x}
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Solve the following differential equation
`y log y ("d"x)/("d"y) + x` = log y
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x)  1`
∴ (1) becomes `"dv"/("d"x)  1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Solve `x^2 "dy"/"dx"  xy = 1 + cos(y/x)`, x ≠ 0 and x = 1, y = `pi/2`
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha  y cos alpha` = 0, then the value of `a^2 + b^2` is
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
`d/(dx)(tan^1 (sqrt(1 + x^2)  1)/x)` is equal to:
The differential equation (1 + y^{2})x dx – (1 + x^{2})y dy = 0 represents a family of:
Solve the differential equation
`y (dy)/(dx) + x` = 0
Solve the differential equation
`x + y dy/dx` = x^{2} + y^{2}
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.