Advertisements
Advertisements
The function y = cx is the solution of differential equation `("d"y)/("d"x) = y/x`
Options
True
False
Advertisements
Solution
This statement is True.
APPEARS IN
RELATED QUESTIONS
Prove that :
`int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2ax)dx`
If 1, `omega` and `omega^2` are the cube roots of unity, prove `(a + b omega + c omega^2)/(c + s omega + b omega^2) = omega^2`
Solve the equation for x: `sin^(1) 5/x + sin^(1) 12/x = pi/2, x != 0`
Show that the function y = A cos 2x − B sin 2x is a solution of the differential equation \[\frac{d^2 y}{d x^2} + 4y = 0\].
Verify that y = \[\frac{a}{x} + b\] is a solution of the differential equation
\[\frac{d^2 y}{d x^2} + \frac{2}{x}\left( \frac{dy}{dx} \right) = 0\]
Verify that y = log \[\left( x + \sqrt{x^2 + a^2} \right)^2\] satisfies the differential equation \[\left( a^2 + x^2 \right)\frac{d^2 y}{d x^2} + x\frac{dy}{dx} = 0\]
For the following differential equation verify that the accompanying function is a solution:
Differential equation  Function 
\[x + y\frac{dy}{dx} = 0\]

\[y = \pm \sqrt{a^2  x^2}\]

Differential equation \[\frac{d^2 y}{d x^2} + y = 0, y \left( 0 \right) = 0, y' \left( 0 \right) = 1\] Function y = sin x
Differential equation \[\frac{d^2 y}{d x^2}  3\frac{dy}{dx} + 2y = 0, y \left( 0 \right) = 1, y' \left( 0 \right) = 3\] Function y = e^{x} + e^{2x}
(1 + x^{2}) dy = xy dx
xy (y + 1) dy = (x^{2} + 1) dx
(e^{y} + 1) cos x dx + e^{y} sin x dy = 0
xy dy = (y − 1) (x + 1) dx
(1 − x^{2}) dy + xy dx = xy^{2} dx
Solve the following differential equation:
\[\text{ cosec }x \log y \frac{dy}{dx} + x^2 y^2 = 0\]
(x^{2} − y^{2}) dx − 2xy dy = 0
\[\frac{dy}{dx} = \frac{y}{x} + \sin\left( \frac{y}{x} \right)\]
Solve the following initial value problem:
\[y' + y = e^x , y\left( 0 \right) = \frac{1}{2}\]
Solve the following initial value problem:
\[\frac{dy}{dx} + y\cot x = 2\cos x, y\left( \frac{\pi}{2} \right) = 0\]
Solve the following initial value problem:
\[\tan x\left( \frac{dy}{dx} \right) = 2x\tan x + x^2  y; \tan x \neq 0\] given that y = 0 when \[x = \frac{\pi}{2}\]
A bank pays interest by continuous compounding, that is, by treating the interest rate as the instantaneous rate of change of principal. Suppose in an account interest accrues at 8% per year, compounded continuously. Calculate the percentage increase in such an account over one year.
Find the curve for which the intercept cutoff by a tangent on xaxis is equal to four times the ordinate of the point of contact.
Radium decomposes at a rate proportional to the quantity of radium present. It is found that in 25 years, approximately 1.1% of a certain quantity of radium has decomposed. Determine approximately how long it will take for onehalf of the original amount of radium to decompose?
If sin x is an integrating factor of the differential equation \[\frac{dy}{dx} + Py = Q\], then write the value of P.
What is integrating factor of \[\frac{dy}{dx}\] + y sec x = tan x?
If x^{m}y^{n} = (x + y)^{m+n}, prove that \[\frac{dy}{dx} = \frac{y}{x} .\]
Form the differential equation representing the family of curves y = a sin (x + b), where a, b are arbitrary constant.
Form the differential equation of the family of circles having centre on yaxis and radius 3 unit.
If a + ib = `("x" + "iy")/("x"  "iy"),` prove that `"a"^2 +"b"^2 = 1` and `"b"/"a" = (2"xy")/("x"^2  "y"^2)`
Find the coordinates of the centre, foci and equation of directrix of the hyperbola x^{2} – 3y^{2} – 4x = 8.
Solve the differential equation:
`"x"("dy")/("dx")+"y"=3"x"^22`
Find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points A(3, 2, 1) and B(1, 4, 2).
The price of six different commodities for years 2009 and year 2011 are as follows:
Commodities  A  B  C  D  E  F 
Price in 2009 (₹) 
35  80  25  30  80  x 
Price in 2011 (₹)  50  y  45  70  120  105 
The Index number for the year 2011 taking 2009 as the base year for the above data was calculated to be 125. Find the values of x andy if the total price in 2009 is ₹ 360.
Choose the correct option from the given alternatives:
The differential equation `"y" "dy"/"dx" + "x" = 0` represents family of
Choose the correct option from the given alternatives:
The solution of `1/"x" * "dy"/"dx" = tan^1 "x"` is
In each of the following examples, verify that the given function is a solution of the corresponding differential equation.
Solution  D.E. 
xy = log y +k  y' (1xy) =y2 
Form the differential equation from the relation x^{2 }+ 4y^{2 }= 4b^{2}
For each of the following differential equations find the particular solution.
(x − y^{2} x) dx − (y + x^{2} y) dy = 0, when x = 2, y = 0
For each of the following differential equations find the particular solution.
`(x + 1) dy/dx − 1 = 2e^(−y)` ,
when y = 0, x = 1
For each of the following differential equations find the particular solution.
`y (1 + logx)dx/dy  x log x = 0`,
when x=e, y = e^{2}.
Solve the following differential equation.
xdx + 2y dy = 0
Solve the following differential equation.
x^{2}y dx − (x^{3} + y^{3} ) dy = 0
Solve the following differential equation.
`dy/dx + y = e ^x`
Solve the following differential equation.
dr + (2r)dθ= 8dθ
Choose the correct alternative.
The differential equation of y = `k_1 + k_2/x` is
Choose the correct alternative.
The differential equation of `y = k_1e^x+ k_2 e^x` is ______.
The solution of `dy/ dx` = 1 is ______
State whether the following is True or False:
The integrating factor of the differential equation `dy/dx  y = x` is e^{x}
Solve:
(x + y) dy = a^{2 }dx
y dx – x dy + log x dx = 0
Select and write the correct alternative from the given option for the question
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Select and write the correct alternative from the given option for the question
The differential equation of y = Ae^{5x} + Be^{–5x} is
Select and write the correct alternative from the given option for the question
Differential equation of the function c + 4yx = 0 is
Solve the differential equation sec^{2}y tan x dy + sec^{2}x tan y dx = 0
Solve the differential equation `("d"y)/("d"x) + y` = e^{−x}
Solve `("d"y)/("d"x) = (x + y + 1)/(x + y  1)` when x = `2/3`, y = `1/3`
Solve the differential equation xdx + 2ydy = 0
Solve the differential equation (x^{2} – yx^{2})dy + (y^{2} + xy^{2})dx = 0
Solve the following differential equation `("d"y)/("d"x)` = x^{2}y + y
Solve: `("d"y)/("d"x) + 2/xy` = x^{2}
For the differential equation, find the particular solution (x – y^{2}x) dx – (y + x^{2}y) dy = 0 when x = 2, y = 0
Solve the following differential equation
`yx ("d"y)/("d"x)` = x^{2} + 2y^{2}
Solve the following differential equation y log y = `(log y  x) ("d"y)/("d"x)`
For the differential equation, find the particular solution
`("d"y)/("d"x)` = (4x +y + 1), when y = 1, x = 0
Solve the following differential equation y^{2}dx + (xy + x^{2}) dy = 0
Solve the following differential equation
`x^2 ("d"y)/("d"x)` = x^{2} + xy − y^{2}
Choose the correct alternative:
Solution of the equation `x("d"y)/("d"x)` = y log y is
Choose the correct alternative:
Differential equation of the function c + 4yx = 0 is
A solution of differential equation which can be obtained from the general solution by giving particular values to the arbitrary constant is called ______ solution
The function y = e^{x} is solution ______ of differential equation
State whether the following statement is True or False:
The integrating factor of the differential equation `("d"y)/("d"x)  y` = x is e^{–x}
Verify y = log x + c is the solution of differential equation `x ("d"^2y)/("d"x^2) + ("d"y)/("d"x)` = 0
Verify y = `a + b/x` is solution of `x(d^2y)/(dx^2) + 2 (dy)/(dx)` = 0
y = `a + b/x`
`(dy)/(dx) = square`
`(d^2y)/(dx^2) = square`
Consider `x(d^2y)/(dx^2) + 2(dy)/(dx)`
= `x square + 2 square`
= `square`
Hence y = `a + b/x` is solution of `square`
Solve the following differential equation
sec^{2} x tan y dx + sec^{2} y tan x dy = 0
Solution: sec^{2} x tan y dx + sec^{2} y tan x dy = 0
∴ `(sec^2x)/tanx "d"x + square` = 0
Integrating, we get
`square + int (sec^2y)/tany "d"y` = log c
Each of these integral is of the type
`int ("f'"(x))/("f"(x)) "d"x` = log f(x) + log c
∴ the general solution is
`square + log tan y` = log c
∴ log tan x . tan y = log c
`square`
This is the general solution.
Solve the following differential equation `("d"y)/("d"x)` = cos(x + y)
Solution: `("d"y)/("d"x)` = cos(x + y) ......(1)
Put `square`
∴ `1 + ("d"y)/("d"x) = "dv"/("d"x)`
∴ `("d"y)/("d"x) = "dv"/("d"x)  1`
∴ (1) becomes `"dv"/("d"x)  1` = cos v
∴ `"dv"/("d"x)` = 1 + cos v
∴ `square` dv = dx
Integrating, we get
`int 1/(1 + cos "v") "d"v = int "d"x`
∴ `int 1/(2cos^2 ("v"/2)) "dv" = int "d"x`
∴ `1/2 int square "dv" = int "d"x`
∴ `1/2* (tan("v"/2))/(1/2)` = x + c
∴ `square` = x + c
Find the particular solution of the following differential equation
`("d"y)/("d"x)` = e^{2y} cos x, when x = `pi/6`, y = 0.
Solution: The given D.E. is `("d"y)/("d"x)` = e^{2y} cos x
∴ `1/"e"^(2y) "d"y` = cos x dx
Integrating, we get
`int square "d"y` = cos x dx
∴ `("e"^(2y))/(2)` = sin x + c_{1}
∴ e^{–2y} = – 2sin x – 2c_{1}
∴ `square` = c, where c = – 2c_{1 }
This is general solution.
When x = `pi/6`, y = 0, we have
`"e"^0 + 2sin pi/6` = c
∴ c = `square`
∴ particular solution is `square`
Given that `"dy"/"dx"` = ye^{x} and x = 0, y = e. Find the value of y when x = 1.
Integrating factor of the differential equation `x "dy"/"dx"  y` = sinx is ______.
Solve: `("d"y)/("d"x) = cos(x + y) + sin(x + y)`. [Hint: Substitute x + y = z]
lf the straight lines `ax + by + p` = 0 and `x cos alpha + y sin alpha = p` are inclined at an angle π/4 and concurrent with the straight line `x sin alpha  y cos alpha` = 0, then the value of `a^2 + b^2` is
There are n students in a school. If r % among the students are 12 years or younger, which of the following expressions represents the number of students who are older than 12?
If `y = log_2 log_2(x)` then `(dy)/(dx)` =
A man is moving away from a tower 41.6 m high at a rate of 2 m/s. If the eye level of the man is 1.6 m above the ground, then the rate at which the angle of elevation of the top of the tower changes, when he is at a distance of 30 m from the foot of the tower, is
`d/(dx)(tan^1 (sqrt(1 + x^2)  1)/x)` is equal to:
The differential equation (1 + y^{2})x dx – (1 + x^{2})y dy = 0 represents a family of:
Solve the differential equation
`y (dy)/(dx) + x` = 0
Solve the differential equation
`x + y dy/dx` = x^{2} + y^{2}
Solve the differential equation `dy/dx + xy = xy^2` and find the particular solution when y = 4, x = 1.